Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: \(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
b: \(=\left(\sqrt{x}-\sqrt{y}\right)^2\)
c: \(=\sqrt{x}\left(\sqrt{y}+2\right)-3\left(\sqrt{y}+2\right)\)
\(=\left(\sqrt{y}+2\right)\left(\sqrt{x}-3\right)\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
Phần b đề không rõ.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+(z+t)=4(1)\\ (x+y)-(z+t)=8(2)\\ (x-y)+(z-t)=12(3)\\ (x-y)-(z-t)=16(4)\end{matrix}\right.\)
Lấy \((1)+(2)\Rightarrow 2(x+y)=12\Rightarrow x+y=6(5)\)
Lấy \((3)+(4)\Rightarrow 2(x-y)=28\Rightarrow x-y=14(6)\)
Lấy \((5)+(6)\Rightarrow 2x=20\Rightarrow x=10\Rightarrow y=6-10=-4\)
Lấy \((1)-(2)\Rightarrow 2(z+t)=-4\Rightarrow z+t=-2(7)\)
Lấy \((3)-(4)\Rightarrow 2(z-t)=-4\Rightarrow z-t=-2(8)\)
Lấy \((7)+(8)\Rightarrow 2z=-4\Rightarrow z=-2\Rightarrow t=-2-z=0\)
Vậy \((x,y,z,t)=(10,-4,-2,0)\)
\(\Leftrightarrow\left(x^2-3x+3\right)^2-5\left(x^2-3x+3\right)+4=0\)
Đặt \(x^2-3x+3=t\)
\(\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-3x+3=1\\x^2-3x+3=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\x^2-3x-1=0\end{matrix}\right.\)
Theo Viet, tổng các nghiệm: \(x_1+x_2+x_3+x_4=3+3=6\)
1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t
Suy ra x+y+z+t≤4tx+y+z+t≤4t
↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4
Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4
Xét 4 trường hợp sau:
• TH1TH1 : xyz=1xyz=1
→x=y=z=1→x=y=z=1
Thay vào (1) có : 3+t=t3+t=t (vô lí)
TH1TH1 không xảy ra: loại
• TH2:xyz=2TH2:xyz=2
Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2
Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn)
(x;y;z;t) = (1;1;2;4)
• TH3:xyz=3TH3:xyz=3
→x=y=1;z=3→x=y=1;z=3
Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2)
TH3TH3 k xảy ra : loại
• TH4TH4 : xyz = 4
+) x = 1; y = z = 2
→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên
+) x=y=1;z=4x=y=1;z=4
Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t)
TH4TH4 không xảy ra: loại
Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị
2)xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
5)
Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man
Câu a : \(\left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}4m+8=3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
Câu b : \(\left(d_1\right)//4x-3\Leftrightarrow4m+8=4\Leftrightarrow m=-1\)
Câu c : \(\left(d_2\right)\perp4x-3\Leftrightarrow\left(3-m\right).4=-1\Leftrightarrow m=\dfrac{13}{4}\)
Câu d : \(\left(d_1\right)c\left(d_2\right)tạiOy\Leftrightarrow\left\{{}\begin{matrix}4m+8\ne3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
a) hàm số trên nghịch biến vì : \(\sqrt{3}-\sqrt{5}< 0\)
b) thay x=1 vào hàm số ta có
y=\(\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{3}\)
=2\(\sqrt{3}\)
c) thay y=1 vào hàm số
1=\(\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{3}+\sqrt{5}\)
\(\Leftrightarrow1=\sqrt{3}x-\sqrt{5}x+\sqrt{3}+\sqrt{5}\)
\(\Leftrightarrow2,97=0,5x\)
\(\Leftrightarrow x=5,94\)
Ta có 5x – 3y = 8 ⇔ y = 5 x − 8 3 = 2 x − x + 8 3
Đặt x + 8 3 = t t ∈ ℤ ⇒ x = 3t – 8 ⇒ y = 2 x − x + 8 3 = 2(3t – 8) – t = 5t – 16
⇒ x = 3 t − 8 y = 5 t − 16 t ∈ ℤ
Đáp án: A