\(a^3\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL: 

Đặt a-b=x ; a+b+ab+1=y thì ta có pt ban đầu trở thành :

x(x2+3y)=y+25

.............(rồi bạn làm tiếp)

25 tháng 5 2019

tới đó rồi làm như thế nào

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên

$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$

$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$

$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)

Do đó điều giả sử là sai.

Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.

6 tháng 4 2017

1 bai thoi cung dc

18 tháng 11 2019

\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge1\)the problem -AoPS mình làm bên này rồi nha! (Câu trả lời của SBM)  

13 tháng 4 2020

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+3\right)=\left(a+1\right)\left(b+1\right)=25\)

\(\Leftrightarrow\left(a-b\right)\left(\left(a-b\right)^2+3\left(ab+a+b+1\right)\right)-\left(a+1\right)\left(b+1\right)=25\)

\(\Leftrightarrow\left(a-b\right)^3+3\left(a-b\right)\left(a+1\right)\left(b+1\right)-\left(a+1\right)\left(b+1\right)=25\)

\(\Leftrightarrow\left(a-b\right)^3+\left(a+1\right)\left(b+1\right)\left(3a-3b-1\right)=25\)

Với a,b bình đẳng ta giải sử \(a>b\)

\(\Rightarrow\left(a-b\right)^3>0\) vì a,b \(\in N^+\)

Vậy a-b là số lập phương

\(\left(a+1\right)\left(b+1\right)\left(3a-3b-1\right)\ge0\)

\(\Rightarrow\left(a-b\right)^3\le25\)

Khi đó \(\left(a-b\right)^3=8\Rightarrow a-b=2\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(3a-3b-1\right)=25-8=16\)

Xét các ước

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái