K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

theo bài ra ta có:

y+1 chia hết cho x

=> y chia hết cho x

1 chia hết cho x\

=> x E Ư(1)={ 1 và -1 }

vậy x= 1;-1

x+1 chia hết cho y

=> x chia hết cho y

1 chia hết cho y

=> y E Ư(1)={ 1 và -1 }

29 tháng 7 2016

Bạn có thể tham khảo cách của mình:

Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y

-TH x=y:

x+1 chia hết cho y

<=> y+1 chia hết cho y

=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)

Ta có cặp so (x;y)=(1;1)

-TH x>y:

Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k

Thay vào ta có: y+1 chia hết cho x

                 <=> x-k+1 chia hết cho x

                 Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x

                 <=> 1-k =0 hoặc >0

+Nếu 1-k=0 thì k=1

Thay vào ta có: x+1 chia hết cho y

                  <=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2

=> y={1;2}. Vậy x={2;3} tương ứng.

Ta có cặp số x;y=(1;2);(2;3)

+Nếu 1-k>0:

Do k thuộc N* nên 1-k>0 là vô lý

Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)

28 tháng 7 2016

Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

26 tháng 10 2019

bạn cho mình hỏi x,y có là số tự nhiên không 

26 tháng 10 2019

có bạn nhé