Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16+7n=16+7n+7-7=16-7+7n+7=9+7\left(n+1\right)\)
Để \(16+7n⋮n+1\Leftrightarrow9+7\left(n+1\right)⋮n+1\)
\(\Rightarrow9⋮n+1\) \(\Rightarrow n+1\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n+1=\) { - 9; - 3; - 1; 1; 3; 9 }
=> n = { - 10; - 4; - 2; 0; 2; 8 }
ta có16+7n chia het cho n+1
=>16+7n-7(n-1)=>16+7n-7n-7 chia het cho n+1
=>8 chia hết cho n+1
=>n+1 là U của 8
=>n+1=1=>n=0
=>n+2=1=>n=-1
=>n+1=4=>n=-3
=>n+1=8=>n=-7
\(\Leftrightarrow10n+14⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2;2;-4;8;-10\right\}\)
hay \(n\in\left\{0;-1;1;-2;4;-5\right\}\)
Điều kiện \(n\inℕ\)
Vì \(5n+15⋮n+2\)nên \(\frac{5n+15}{n+2}\)phải là số tự nhiên.
Mà \(\frac{5n+15}{n+2}=\frac{5n+10+5}{n+2}=\frac{5\left(n+2\right)}{n+2}+\frac{5}{n+2}=5+\frac{5}{n+2}\)
Mặt khác \(\frac{5n+15}{n+2}\inℕ\Rightarrow5+\frac{5}{n+2}\inℕ\)mà \(5\inℕ\Rightarrow\frac{5}{n+2}\inℕ\)
\(\Rightarrow n+2\inƯ^+\left(5\right)\Rightarrow n+2\in\left\{1;5\right\}\)
\(TH1:n+2=1\Rightarrow n=-1\)(loại vì n là số tự nhiên)
\(TH2:n+2=5\Rightarrow n=3\)(nhận)
Vậy để \(5n+15⋮n+2\)thì n = 3
Ta có : 5n+15 = 5n+15 = 5n+15 \(⋮\) n+2
n+2 = 5.( n+2)=5n+10 \(⋮\)n+2
\(\Rightarrow\)5n+15 - ( 5n+10 ) \(⋮\) n+2
\(\Rightarrow\) 5\(⋮\)n+2
\(\Rightarrow\)n+2\(\in\) ước của 5
\(\Rightarrow\)n+2={ 1;5}
\(\Rightarrow\)n=3 ( lấy 5 - 2 )
5n + 13 \(⋮\) n + 2 (n \(\in\) N*)
5n + 10 + 3 ⋮ n + 2
5.(n + 2) + 3 ⋮ n + 2
3 ⋮ n + 2
n + 2 \(\in\) Ư(3) = {-3; -1; 1; 3}
n \(\in\) {-5; -3; -1; 1}
Vì n \(\in\) N nên n = 1
Để 4n - 1 chai hết cho 7
Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}
Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}
7n + 24 chia hết cho n + 1
⇒7n + 7 + 17 chia hết cho n + 1
⇒7(n + 1) + 17 chia hết cho n + 1
⇒17 chia hết cho n + 1
⇒n + 1 ∈ Ư(17) = {1; -1; 17; -17}
Mà n ∈ N
⇒n + 1 ∈ {1; 17}
⇒n ∈ {0; 16}
Vậy ...
7n + 24 = 7n + 7 + 17 = 7(n + 1) + 17
Để (7n + 24) ⋮ (n + 1) thì 17 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(17) = {-17; -1; 1; 17}
⇒ n ∈ {-18; -2; 0; 16)
Mà n ∈ ℕ
⇒ n ∈ {0; 16}