K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có : 3. 34 \(\ge\) 3n > 32

=> 35 \(\ge\) 3n > 32

=> n \(\in\) { 3 ; 4; 5 }

19 tháng 8 2016

3 ; 4 ;  5 

8 tháng 9 2018

a) ta có 2.16\(\ge\)2n > 4

    \(\rightarrow\)2.24\(\ge\)2n>22

    \(\rightarrow\) 25\(\ge\)2n>22

\(\Rightarrow\) n\(\in\){ 3;4;5}

b) làm tương tự

27 tháng 7 2015

a. 2.16 \(\ge\)2n>4

=> 32 \(\ge\)2n>4

=> 25 \(\ge\)2n>22

=> n \(\in\left\{3;4;5\right\}\)

b. \(9.27\le3^n\le243\)

=> \(243\le3^n\le243\)

=> \(3^5\le3^n\le3^5\)

=> n=5

9 tháng 10 2016

a)n=1

b)n=0

c) ko có số tự nhiên nào phù hợp dể thay n

9 tháng 10 2016

a) n thuộc {+-1;0}

b) n=5

c) \(2^{2n+2}=144\)

không tìm được n thỏa mãn

17 tháng 7 2016
1a) 32_>2^n>4 2^5_>2^n>2^2 =>n thuộc {5;4;3} b)243_<3^n_<243 3^5_<3^n_<3^5 =>n=5
18 tháng 9 2017

lên câu hỏi tương tự

18 tháng 9 2017

a)\(2.16\ge2^n>4\)

\(2.2^4\ge2^n>2^2\)

\(2^5\ge2^n>2^2\)

\(5\ge n>2\)

\(\Rightarrow n\in\left(5,4,3\right)\)

b)\(9.27\le3^n\le243\)

\(3^2.3^3\le3^n\le3^5\)

\(3^5\le3^n\le3^5\)

\(\Rightarrow n=5\)

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5

15 tháng 8 2016

h) \(8< 2^n\le2^9.2^{-5}\Leftrightarrow2^3< 2^n\le2^4\) \(\Rightarrow3< n\le4\)

Vì n là số tự nhiên nên n = 4

k) \(27< 81^3:3^n< 243\Leftrightarrow3^3< 3^{12-n}< 3^5\Rightarrow3< 12-n< 5\Leftrightarrow7< n< 9\)

Vì n là số tự nhiên nên n = 8

l) \(\left(5n+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5n+1\right)^2=\left(\frac{6}{7}\right)^2\Rightarrow5n+1=\frac{6}{7}\) (vì n là số  tự nhiên)

=> n = -1/35 (không tm)

m) \(\left(n-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(n-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\Rightarrow n-\frac{2}{9}=\frac{4}{9}\Leftrightarrow n=\frac{2}{3}\left(ktm\right)\)

n) \(\left(8n-1\right)^{2m+1}=5^{2m+1}\Leftrightarrow8n-1=5\Leftrightarrow n=\frac{3}{4}\left(ktm\right)\) (cần thêm đk của m)

15 tháng 8 2016

h)

\(8< 2^2\le2^9.2^{-5}\)

\(\Rightarrow2^3< 2^n\le2^4\)

\(\Rightarrow2^n=2^4\Rightarrow n=4\)