\(\frac{a+b}{a^2+b^2}=\frac{7}{25}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow c^2=ab+ac+bc+c^2\)

\(\Leftrightarrow ab+ac+bc=0\)

\(\Leftrightarrow ab=-c\left(a+b\right)\)

\(\Leftrightarrow\frac{ab}{a+b}=-c\)

\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

11 tháng 4 2020

Akai Haruma làm sao để có được cái chữ "Câu hỏi của Angela jolie - Toán lớp 9 \(|\) Học trực tuyến" mà click được vậy ạ!

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

4 tháng 7 2017

a) \(M=\frac{211241}{849338}\)

b) a = 9; b = 11

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
30 tháng 7 2018

a) Đk \(x>0\)và \(x\ne4\)

=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\frac{2}{\sqrt{x}+2}\)

30 tháng 7 2018

b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)

\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

Vì \(2\left(\sqrt{x}+2\right)>0\)

\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)

nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)

Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)

12 tháng 6 2020

Ta có : \(\frac{a}{b}=\frac{35}{49}=\frac{5}{7}\)\(\Rightarrow a=5k;b=7k\Rightarrow a+b=12k\)

\(\frac{c}{d}=\frac{130}{143}=\frac{10}{11}\Rightarrow c=10f;d=11f\)\(\Rightarrow c+d=21f\)

\(\frac{e}{g}=\frac{7}{13}\)\(\Rightarrow e=7n;g=13n\Rightarrow e+g=20n\)

gọi số tự nhiên lớn nhất đó là x 

\(\Rightarrow x=12k=21f=20n\)

\(\Rightarrow x\in BCNN\left(12,21,20\right)=420\)

\(\Rightarrow x=420t\left(t\in N\right)\)

vì x là số có 3 chữ số lớn nhất nên với t = 2 ,ta được x = 840

vậy ...

12 tháng 6 2020

đề là \(\frac{a}{b}=\frac{35}{49}\) nhỉ ?

13 tháng 8 2020

B = \(\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)

B = \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x-4-\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}+2}\)

=>\(\frac{A}{B}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4\sqrt{x}+8}{\sqrt{x}-5}\)

\(\frac{A}{B}< 4\) <=> \(\frac{4\sqrt{x}+8}{\sqrt{x}-5}-4< 0\) <=> \(\frac{4\sqrt{x}+8-4\sqrt{x}+20}{\sqrt{x}-5}< 0\) <=> \(\frac{28}{\sqrt{x}-5}< 0\)

Do 28 > 0 => \(\sqrt{x}-5< 0\) <=> \(\sqrt{x}< 5\) => x < 25 

Do x là số tự nhiên lớn nhất => x = 24