Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)
abc \(\le\) 999 => abc + 1 \(\le\) 1000
=> \(n^2\) < 1000 hay 2 < n \(\le\) 31
ta có abc - cba = 99(a - c) = 4n - 5
=> 4n - 5 = 99k
<> n = (99k + 5)/4 = 25k + 1 + (1 - k)/4
=> 1 - k = 4m hay k = 1 - 4m
=> n = 25(1 - 4m) + 1 + m = -99m + 26
do 2< n < =31 => m = 0 hay n = 26
với n = 26 ta có abc = 675 thỏa mãn
abc = 100a + 10b + c = n2 - 1 (1)
cba = 100c + 10b + a = ( n - 2 )2 = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được:
abc - cba
= ( 100a + 10b + c ) - ( 100c + 10b + a ) = ( n2 - 1 ) - ( n2 - 4n + 4 )
= 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 4n - 4
= 100a - a + 10b -10b +c - 100c = n2 - n2 - 1 - 4 + 4n
= 99a - 99c = -5 + 4n
= 99. ( a - c ) = 4n - 5
=> 4n - 5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999
=> 100 \(\le\) n2 - 1 \(\le\) 999
=> 101 \(\le\) n2 \(\le\) 1000
=> 11 \(\le\) n \(\le\) 31
=> 39 \(\le\) 4n - 5 \(\le\) 119
=> Vì 4n - 5 \(⋮\) 99 nên :
4n - 5 = 99
4n = 99 + 5
4n = 104
n = 104 : 4
n = 26
=> abc = n2 - 1
abc = 262 - 1 ( thay n = 26 )
abc = 675
Vậy số cần tìm là 675.
ĐK :0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N
Trừ từng vế pt (1) và (2) ta có
99(a−c)=4n−599(a−c)=4n−5 Vì (a−c)(a−c) là số tự nhiên nên 4n−54n−5 chia hết cho 99 mà 39≤4n−5≤11939≤4n−5≤119
___
⇒4n−5=99⇒n=26⇒abc=262−1=675⇒4n−5=99⇒n=26⇒abc=262−1=675 (nhận)
___
Thử lại: cba=576=242=(26−2)2cba=576=242=(26−2)2 ( đúng)
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 ‐1 999 => 101 n^2 1000 => 11 31 => 39 4n ‐ 5 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 ‐1 999 => 101 n^2 1000 => 11 31 => 39 4n ‐ 5 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 675