K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Ta có:

\(x^3+y^3-xy=7\)

\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)

Thay x+y = 3 ta dc:

\(3^3-9xy-xy=7\)

\(-10xy=-20\)

\(xy=2\)

Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}

28 tháng 8 2020

\(x^3-y^3+xy=1\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)+xy=1\)

\(\Leftrightarrow\left(x-y\right)^3+\frac{1}{27}+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)

\(\Leftrightarrow\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}\right]+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)

\(\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}+3xy\right]=\frac{26}{27}\) 

Đoạn này ez

6 tháng 8 2020

ta có x3+y3=(x+y)(x2-xy+1)=9

mà x+y=3 => x2-xy+1=3 => x2-xy=2 => x(x-y)=2

x,y là số thực => x-y là số thực => x;x-y \(\inƯ_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)

với x=-2 => không có giá trị y thỏa mãn

với x=-1 => không có giá trị y thỏa mãn

với x=1; x+y=3 => y=2

với x=2; x+y=3 => y=1

vậy (x;y)=(1;2);(2;1)

6 tháng 8 2020

x + y = 3 => y = 3 - x

x3 + y3 = 9

<=> x3 + ( 3 - x )3 = 9

<=> x3 - x+ 9x- 27x + 27 - 9 = 0

<=> 9x2 - 27x + 18 = 0

<=> 9( x2 - 3x + 2 ) = 0

<=> 9( x2 - x - 2x + 2 ) = 0

<=> 9[ x( x - 1 ) - 2( x - 1 ) ] = 0

<=> 9( x - 2 )( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với x = 2 => 2 + y = 3 => y = 1

Với x = 1 => 1 + y = 3 => y = 2

Vậy các cặp số ( x ; y ) thỏa mãn là : ( 2 ; 1 ) , ( 1 ; 2 ) 

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0