K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

* Nếu y <0 => Dễ thấy VT dương; VP âm => vô lí => vô nghiệm.

* Với y>=0:

Áp dụng BĐT Cô-si cho các số thực không âm ta có:

x2 + 1 $\ge $2IxI Xảy ra dấu bằng khi x = 1 hoặc -1

x2 + y2 $\ge $2IxIy Xảy ra dấu bằng khi x = y hoặc -y

=> (x2 + 1)(x2 + y2)$\ge $4x2y

Xảy ra dấu bằng khi và chỉ khi x = y = 1 hoặc x = -1; y = 1

Vậy tìm được 2 cặp số (x; y) thoả mãn đề bài là (1; 1) và (-1; 1)

13 tháng 2 2018

MÌnh nghĩ thế này ko bt đúng ko

Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)

Dấu = xảy ra khi x=y=1

Vậy (x;y)=(1;1)

13 tháng 2 2018

Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

Áp dụng BĐt cô-si , ta có 

\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)

Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)

Dấu = xảy ra <=> x=y=1 

^_^ 

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

NV
26 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)

\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)

\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)

\(\Rightarrow a+b=0\)

\(\Rightarrow x+2+y-1=0\)

\(\Rightarrow x+y=-1\)

26 tháng 8 2021

\(\sqrt{x^2+5x+4}\) hay \(\sqrt{x^2+4x+5}\) thế bạn

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$

$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$

$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$

$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$

$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$

$\Rightarrow \text{VT}\geq \frac{27}{4}$

Dấu "=" xảy ra khi $x=y=z>0$

10 tháng 8 2023

Áp dụng BĐT Bunhiacopxky:

VT(12+12+12)≥(1+��+�+1+��+�+1+��+�)2

⇔3VT≥(3+��+�+��+�+��+�)2

=[3+�2��+��+�2��+��+�2��+��]2

≥[3+(�+�+�)22(��+��+��)]2

≥[3+3(��+��+��)2(��+��+��)]2=814

⇒VT≥274

Dấu "=" xảy ra khi �=�=�>0

Ta có:

\(\left(x-\frac{1}{y}\right)^2\ge0\Rightarrow x^2+\frac{1}{y^2}\ge2.\frac{x}{y}\)

\(\left(y-\frac{1}{x}\right)^2\ge0\Rightarrow y^2+\frac{1}{x^2}\ge2.\frac{y}{x}\)

Mặt khác , vì \(x>0;y>0\)nên suy ra

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\ge2.\frac{x}{y}.2.\frac{y}{x}=4\)

Vậy GTNN của M là 4, khi xy=1

P/s tham khảo nha

3 tháng 4 2020

                                                                     Giải

5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )

    = [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2  ) 

    = ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )

    = A2  - 4 ( A - 2 )

    <=> A2 - 4.A + 3 = 0

    <=>   \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)

Lưu ý : đặt : A = xy - x - 2y + 4 

TH1 : xy - x - 2.y + 4  = 3 

<=> xy - x - 2y + 1        = 0 

<=> x.( y  - 1 ) - 2.(y-1 ) = 1

<=> ( x - 2 )  (  y - 1 ) = 1 

Ta có bảng : 

x-21-1
 y - 1 1-1
3-1
y20

TH2 : xy - x - 2y + 4 = 1 

<=> ( x- 2 ) . ( y -1 ) =-1 

x-2 -11
y - 11-1
 x   -13
  20