Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 18n+3 và 21n+7 cùng rút gọn được cho số nguyên tố p
suy ra 6(21n+7) - 7(18n+3) chia hết cho p hay 21 chia hết cho p
vậy p thuộc {3;7}. nhưng 21n +7 không chia hết cho 3 nên suy ra 18n+3 chia hết cho 7
do đó 18n +3 -21 chia hết cho 7 hay 18(n-1) chia hết cho 7.từ đó n-1 chia hết cho 7
vậy n=7k +1 (k thuộc N) thì phân số 18n+3/21n+7 có thể rút gọn được.
BÀI NÀY MK BIẾT LÀM NHƯNG KO BIẾT CÁCH TRÌNH BÀY THÔI
BAN CHƯA RÚT GỌN HẲN
Ta có: \(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)
Do (3;7)=(6n+1;3n+1)=(3;3n+1)=1
=> Phân số có thể rút gọn khi 6n+1 chia hết cho 7
Mà 6n+1=7n-(n-1)
=> n-1 chia hết cho 7
=> n=7k+1 thì phân số có thể rút gọn
=> n=7k+2; 7k+3; 7k+4; 7k+6; 7k+6 thì phân số có thể rút gọn
\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1
đúng k
A = \(\dfrac{18n+3}{21n+7}\)
⇔A = \(\dfrac{3.(6n+1)}{7.(3n+1)}\)
ta có (3,7) = 1
(3,3n+1)= 1
(6n+1; 3n+1) =1
vậy để A tối giản thì 6n + 1 \(\ne\) 7.k
⇔ n ≠ ( 7k - 1) : 6; n ϵ N