K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Nguyen p nguyên tố=>p2>p<=>p2-1>p-1

=>2y(y+1)>2x(x+1) mà: x,y nguyên dưong=>y>x

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:

Lấy PT dưới trừ PT trên thu được:

\(2y(y+2)-2x(x+2)=p^2-p\)

\(\Leftrightarrow 2(y-x)(y+x+2)=p(p-1)\)

\(\Rightarrow 2(y-x)(y+x+2)\vdots p(1)\)

Vì $p=2x(x+2)+1\geq 7$ với mọi $x$ nguyên dương nên $p$ là số nguyên tố lẻ. $\Rightarrow (2,p)=1(2)$

Lại có:

Hiển nhiên $y>x$ nên $y-x$ dương.

\((y-x)^2< 2(y-x)(y+x+2)=p(p-1)< p^2\)

\(\Rightarrow y-x< p(3)\)

Từ \((1);(2);(3)\Rightarrow y+x+2\vdots p\)

Mà:

\(p=2x(x+2)+1>2x^2\geq 2x\Rightarrow x< \frac{p}{2}\)

\(p^2=2y(y+2)+1>y^2\Rightarrow y< p\)

\(\Rightarrow x+y+2< \frac{p}{2}+p+2< 2p\) với $p\geq 7$

Do đó để $x+y+2\vdots p$ thì $x+y+2=p$

\(\Rightarrow y-x=\frac{p-1}{2}\)

\(\Rightarrow x=\frac{p-3}{4}\)

Thay vào PT đầu tiên:

\(p-1=\frac{p-3}{2}.\frac{p+5}{4}\)

\(\Leftrightarrow 8(p-1)=p^2+2p-15\Leftrightarrow (p+1)(p-7)=0\Rightarrow p=7\)

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Nếu x,y nguyên dương thì 3x,3y nguyên dương

=> 3x-1 , 3y-1 nguyên âm mà 2y,2x nguyên dương

=> không có số nguyên dương x, y nào thỏa mản đk

27 tháng 9 2017

a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)

Trừ 2 vế lại ta được 

\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Rightarrow x=\frac{1}{2}\)

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

18 tháng 5 2018

⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy

⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0

⇌ (x+1)(y+1)(2x+2y)+2xy=0

⇌ 2(x+1)(y+1)(x+y)+2xy=0

⇌ 2((x+1)(y+1)(x+y)+xy)=0

⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0

mk đc đến đó thui

thông cảm nha

18 tháng 5 2018

mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản

6 tháng 12 2017

\(\left\{{}\begin{matrix}\left(x^2-x\right)\left(2y-y^2\right)=20\\x^2-x+y^2-2y=19\end{matrix}\right.\).
Đặt \(a=x^2-x,b=y^2-2y\), ta có hệ:
\(\left\{{}\begin{matrix}-ab=20\\a+b=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab=-20\\b=19-a\end{matrix}\right.\)\(\Rightarrow a\left(19-a\right)=-20\)\(\Leftrightarrow-a^2+19a+20=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=20\\a=-1\end{matrix}\right.\).
Với a = 20 suy ra b = 19 - 20 = -1.
Ta có \(\left\{{}\begin{matrix}x^2-x=20\\y^2-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-20=0\\y^2-2y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+4\right)\left(x-5\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\\y=1\end{matrix}\right.\).
Ta có hai cặp nghiệm \(\left(x,y\right)=\left(-4,1\right);\left(x,y\right)=\left(5,1\right)\).
Với a = -1 suy ra \(x^2-x=-1\Leftrightarrow x^2-x+1=0\) (vô nghiệm).
Vậy hệ phương trình có hai cặp nghiệm \(\left(x,y\right)=\left(-4,1\right);\left(x,y\right)=\left(5,1\right)\).