K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

Bài 1:Xét p là số chẵn thì p=2 nên p+11=2+11=13(thỏa mãn)

Xét p là số lẻ thì p>2 nên p+11 là số chẵn chia hết cho 2(không thõa mãn)

Vậy chỉ có p=2 thỏa mãn bài toán

Bài 2:Xét p=2 thì p+8=2+8=10 chia hết cho 2(không thỏa mãn)

Xét p=3 thì p+8=11;p+10=13 (thỏa mãn)

Xét p>3 thì p có dạng 3k+1 hoặc 3k+2(k\(\in\)N*)

Nếu p=3k+1 thì p+8=3k+1+8=3k+9=3(k+3) chia hết cho 3(không thỏa mãn)

Nếu p=3k+2 thì p+10=3k+2+10=3k+12=3(k+4) chia hết cho 3(không thỏa mãn)

Vậy chỉ có p=3 thỏa mãn bài toán

 Với p=2 thì 
p+8=2+8=10 (loại) 
Với p=3 thì 
p+8=3+8=11(chọn) 
Vì p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc 3k+2 
Với p=3k+1 
p+8=3k+1+8=3k+9chia hết cho 3 
Với p=3k+2 
p+8=3k+2+8=3k+10(chọn) 
Với p=3 hoặc 3k+2 thì 
p+8 sẽ nguyên tố 
a) 
Để p+11 nguyên tố thì p phải chẵn=> p=2.