K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

p=5,q=3

29 tháng 10 2017

ghi cả cách làm đi Phương

7 tháng 8 2016

\(P=3n^3-7n^2+3n+6\)

\(=3n^3+2n^2-9n^2-6n+9n+6\)

\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)

\(=\left(3n+2\right)\left(n^2-3n+3\right)\)

để p là nguyên tố thì 3n+2 hoặc n2-3n+3  phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài) 

*3n+2=1=>n=-1/3

*n2-3n+3=1<=>n2-3n+2=0

\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)

                            \(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)

nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)

vậy n=1 

12 tháng 6 2019

Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)

Mà A là lũy thừa số nguyên tố

=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)

+ Nếu \(x+3\ge x^2+1\)

=> \(-1\le x\le2\)

Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài 

+ Nếu \(x+3< x^2+1\)

=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)

=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên

=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên

=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)

=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)

Kết hợp với ĐK và thay vào ta được

\(x\in\left\{-2,-1,0,1,2\right\}\)

12 tháng 6 2019

Em nhầm xin lỗi

1 tháng 3 2017

\(a^2+a-p=0\)

\(\Rightarrow a\left(a+1\right)=p\)

Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p

Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p

=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0

Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)

             với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)

Vậy a = 1

27 tháng 6 2017

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

7 tháng 11 2018

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!