\(\dfrac{n\left(n+3\right)}{2}+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

n có dạng 2k, 2k+1

nếu n có dạng 2k thì p= (n-1)(n+2)/2=(2k-1).(2k+2)/2=(2k-1)(k+1) mà p là số nguyên tố suy ra

\(\orbr{\begin{cases}2k-1=1\\k+1=1\end{cases}\Rightarrow\orbr{\begin{cases}2k=2\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}p=2\left(N\right)\\p=-1\left(L\right)\end{cases}}}\) 

nếu n có dạng 2k+1 thì p= (n-1)(n+2)/2=k.(2k+3) mà p là số nguyên tố suy ra

\(\orbr{\begin{cases}k=1\\2k+3=1\end{cases}\Rightarrow\orbr{\begin{cases}k=1\\2k=-2\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=-1\end{cases}\Rightarrow}\orbr{\begin{cases}n=3\\n=-1\end{cases}\Rightarrow}\orbr{\begin{cases}p=5\left(N\right)\\p=-1\left(L\right)\end{cases}}}\)

vậy n=2 và n=3 thì p là số nguyên tố hay p=5,p=3 là số nguyên tố có dạng (n-1)(n+2)/2

DD
20 tháng 8 2021

\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)

 \(p=2+3+...+n\)

\(p=n+n-1+...+2\)

\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)

\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)

- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)

nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).

- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)

do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).

Vậy \(p=2\)hoặc \(p=5\).

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

9 tháng 4 2017

\(n\left(n+1\right)\left(n+2\right)⋮6\)

vì n(n+1)(n+2) là ba số tự nhiên liên tiếp nên chia hết cho 2 và cho 3 suy ra chia hết cho 6

để P là số nguyên tố =>n(n+1)(n+2) phải là 3 hoặc các số chẵn lớn hơn 2

18 tháng 8 2017

Để (n-2)(n^2 + n - 1) là số nguyên tố => (n-2) hoặc n^2 + n - 1 phải = 1 

Mà n^2 + n - 1 = n^2 + 1 +(n-2) > n+2 

=> n + 2 = 1 => n = 3

18 tháng 8 2017

Vì p là tích của hai số ( n - 2 )( n^2 + n - 1 )

=> p là số nguyên tố thì một trong hai số tren phải = 1 ( nếu cả hai tích số đều lớn hơn 1 => p là hợp số , trái vs đầu bài )

ta luôn có : n^2 + n - 1 = n^2 + 1 + ( n- 2 ) > ( n - 2 )

vậy => n - 2 = 1 => n = 3 => p = 11

Chúc bạn hương học giỏi nha <3 <3 <3

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137