K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2023

Lời giải:

$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$

$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$

Với $n$ nguyên,  để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$

Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:

$n^2+n+1\in\left\{1; 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

 

2 tháng 11 2016

Đặt \(2377-9y^2-6y=x^2\Leftrightarrow\left(3y+1\right)^2=2378-x^2\)

\(\Rightarrow\left(3y+1\right)^2\le2378< 2401=49^2\)

Từ đó suy ra được \(-49\le3y+1\le49\Leftrightarrow-16\le y\le16\)

Vậy y thuộc khoảng trên. Bạn tự liệt kê ra nhé ^^

1 tháng 3 2017

P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))

=> P(0) = c = m2

P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))

=> a + b = k2 - c = k2 - m2 là số nguyên (*)

P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))

=> 4a + 2b + m2 = n2

=> 4a + 2b = n2 - m2 là số nguyên (1)

Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên

=> 2a nguyên => a nguyên

Kết hợp với (*) => b nguyên

Từ (1) => n2 - m2 chẵn (2)

=> (n - m)(n + m) chẵn

Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)

Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)

hay n2 - m2 chia hết cho 4

Kết hợp với (1) => \(2b⋮4\)

=> b chia hết cho 2 => b chẵn

Ta có đpcm

13 tháng 6 2015

n2+d=a2

=>(n-a)(n+a)=d

2n2 chia hết cho d

=>2n2 chia hết cho (n-a)(n+a)

Đến đây học lớp 8 làm vậy là tắc