K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\)  vậy

2 tháng 5 2021

cái 2+\(\dfrac{3}{x}\)

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$

$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$

$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$

$\Rightarrow 10(n+1)-1\vdots d$

Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$

Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.

Đặt $n+1=a^2; 4n^2-2n-5=b^2$

$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$

$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$

$\Leftrightarrow 4a^4-10a^2+1=b^2$

$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$

$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$

Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: