Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
Mk chỉ tập trung giải câu b thui nha
a) p = 2
b) Ta có S= 5 + 52+53+...+52013
=> S = (5+52+53)+...+(52011+52012+52013)
=> S =5(1+5+25)+...+52011(1+5+25)
=> S = 5.31+....+52011.31
=> S = 31(5+54+...+52011)
=> S chia hết cho 31 (ĐPCM)
a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )
Xét p > 2 :
Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )
Vậy \(p=2\)
b) \(S=5+5^2+5^3+....+5^{2013}\)
Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)
\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)
\(S=5.31+.....+5^{2011}.31\)
\(S=31\left(5+......+5^{2011}\right)\)
Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)
\(\Rightarrow S⋮31\)
Vậy \(S⋮31\left(ĐPCM\right)\)
a) ta có: x+5 chia hết cho x-2
mà: x-2 chia hết cho x-2
=>x+5-(x-2) chia hết cho x-2
=>x+5-x+2 chia hết cho x-2
=>7 chia hết cho x-2
=>x-2 thuộc Ư(7)
=>x-2 thuộc tập hợp {-1,-7,1,7}
=>x thuộc tập hợp {1,-5,3,9)
vậy x thuộc tập hợp {1,-5,3,9}
b) tương tự câu trên ta đc x thuộc tập hợp {4,6,3,7,0,10,-5,15}
\(n^2+3⋮n+5\)
=>\(n^2+5n-5n-25+28⋮n+5\)
=>\(28⋮n+5\)
=>\(n+5\in\left\{1;-1;2;-2;4;-4;7;-7;14;-14;28;-28\right\}\)
=>\(n\in\left\{-4;-6;-3;-7;-1;-9;2;-12;9;-19;23;-33\right\}\)
a,2n-1 chia hết cho n+3
=> 2n+6-7 chia hết cho n+3
mà 2n+6 chia hết cho n+3
=>7 chia hết cho n+3
=> n-3 E Ư(7)
n-3={-7;-1;1;7}
=>n={-4;2;4;10}
b,6a+1 chia hết cho 2a-1
=>6a-3+4 chia hết cho 2a-1
mà 6a-3 chia hết cho 2a-1
=>4 chia hết cho 2a-1
=> 2a-1 E Ư(4)
2a-1={-4;-2;-1;1;2;4}
2a={-3;-1;0;2;3;5}
mà a là số nguyên
=> a={0;1}