Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có }0\le\left|a\right|\le4\)
Vậy \(\left|a\right|\in\left\{1;2;3\right\}\) (vì a là số nguyên)
Do đó \(a\in\left\{-1;-2;-3;1;2;3\right\}\)
a) Liệt kê
x = {-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7}
Tính tổng là: -7+-6+-5+-4+.....+4+5+6+7
= (-7+7)+(-6+6)+(-5+5)+....+(-1+1)+0
= 0+0+0....+0
= 0
b) Liệt kê
x = {-5;-4;-3;-2;-1;0;1;2;3}
Tính tổng: -5+-4+-3+-2+-2+0+1+2+3
= (-3+3)+(-2+2)+(-1+1)+0+-5+-4
= 0+0+0+0+ -9
= -9
c) Liệt kê:
x = { -19;-18;-17;-16;....;18;19;20}
Tính tổng: -19+-18+-17+-16+....+15+16+17+18+19+20
= (-19+19)+(-18+18)+...+(-1+1)+0+20
= 0 + 0+...+0+20
= 20
*TÌM X:
a) 2x -35 = 15
2x = 15 + 35
2x = 50
x = 50 :2
x = 25
b) 3x + 17 = 2
3x = 17+2
3x = 19
x = 19 : 3
x = 6,33
c) /x-1/ = 0
\(\hept{\begin{cases}x-1=0\\x-1=-0\left(loai\right)\end{cases}}\)
Vậy x-1 = 0
x = 0 +1 = 1
Cách 1 : a4 + b4≥ a3.b + a.b3
Khi và chỉ khi a4 + b4 - a3.b - a.b3 ≥ 0
Khi và chỉ khi a3 (a - b) - b3 (a - b) ≥ 0
Khi và chỉ khi (a - b)(a3 - b3) ≥ 0 khi và chỉ khi (a - b)(a - b)(a2 + ab + b2) ≥ 0
Khi và chỉ khi (a - b)2[(a + b/2)2 + 3.b3/4] ≥ 0 (hiển nhiên đúng với mọi a,b)
Cách 2 : Ta có[ a2 - b2]2 ≥ 0
=> a4 - 2.a2.b2 + b4 ≥ 0
=> a4 + b4 ≥ 2.a2.b2
=> a4 + b4 + a4 + b4 ≥ a4 + b4 + 2.a2.b2
=> 2( a4 + b4) &ge ; ( a2 + b2)2 (1)
Mặt khác (a - b)2≥ 0
=> a2 - 2ab + b2 ≥ 0
=> a2 + b2≥2ab
=> (a2 + b2)( a2 + b2)≥2ab (a2 + b2)
=> (a2 + b2)2 ≥2ab (a2 + b2) (2)
Từ (1) và (2) => 2( a4 + b4 ) ≥ 2ab (a2 + b2)
=> ( a4 + b4 )≥ a3.b + a.b3
Cách 3 :
( a4 + b4 ) -( a3.b + a.b3) = 1/2 (2 a4 + 2 b4 - 2 a3.b -2 a.b3)
= 1/2 [(a4 - 2 a3.b +
cái này là toán lớp 6, làm quá không à
giải:
a= -4, -3, -2, -1, 0, 1, 2, 3, 4
=> -4, -3, -2, -1, 0, 1, 2, 3, 4 có giá trị tuyệt đối bé hơn hoặc bằng 4
a \(\varepsilon\) { -4;-3;-2;-1;0;1;2;3;4 }
ÔI BÀI NÀY MIK VỪA LÀM XOONG .........
a = [ - 4 , - 3, - 2 ,- 1 , 0 , 1 , 2 ,3 , 4 ]