Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x-y}{7-13}=\frac{42}{-6}=-7\)
Do đó:
\(\hept{\begin{cases}\frac{x}{7}=-y\\\frac{y}{13}=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-49\\y=-91\end{cases}}\)
Vậy x = -49; y = -91
Đặt \(\frac{x}{7}=\frac{y}{13}=k\)
=> x = 7k,y = 13k
=> x - y = 7k - 13k
=> x - y = -6k
=> 42 = -6k
=> k = -7
Vậy x = 7.(-7) = -49 , y = 13.(-7) = -91
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2.\left(a^2+b^2\right)-1⋮a+b+1\left(a+b+1\in Z\right)\)
\(\Leftrightarrow2a^2+2b^2-1⋮a+b+1\Leftrightarrow\left(2b\right)^2-1^2⋮a+b+1\)
\(\Leftrightarrow\left(2b-1\right).\left(2b+1\right)⋮2b+1\left(\text{luôn đúng}\right)\)
p/s: ko bt cách c/m này đc ko nx...
![](https://rs.olm.vn/images/avt/0.png?1311)
TH1: Nếu a+b+c \(\ne0\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)
Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)
TH2 : Nếu a+b+c = 0
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)
vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
TH1: a+b+c=0
\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)
TH2: a+b+c khác 0
\(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)
a) a=|a|a=|a|
\(\Leftrightarrow a\ge0\)
b) a<|a|
\(\Leftrightarrow a< 0\)