Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Bạn thông cảm, mình phải sử dụng cách của lớp 9 vậy :))
\(2x^2+8x=67-3y^2\Leftrightarrow2x^2+8x+\left(3y^2-67\right)=0\)\(\left(x,y>0\right)\)
Xét \(\Delta'=16-2.\left(3y^2-67\right)=-6y^2+150\)
Để phương trình có nghiệm thì \(0\le\Delta'\le150\)
\(\Rightarrow0< y\le5\)(Vì x,y nguyên dương)
Do đó ta xét y trong khoảng trên, được :
1. Với y = 1 suy ra phương trình : \(2x^2+8x-64=0\Leftrightarrow x^2+4x-32=0\Rightarrow x=4\)(Nhận ) hoặc \(x=-8\)( Loại)
2. Với y = 2 suy ra phương trình : \(2x^2+8x-55=0\Rightarrow x=\frac{-4+3\sqrt{14}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{14}}{2}\)(Loại)
3. Với y = 3 suy ra phương trình : \(2x^2+8x-40=0\Leftrightarrow x^2+4x-20=0\Rightarrow x=-2+2\sqrt{6}\)(loại) hoặc \(x=-2-2\sqrt{6}\)(Loại)
4. Với y = 4 suy ra phương trình : \(2x^2+8x-19=0\Rightarrow x=\frac{-4+3\sqrt{6}}{2}\)(Loại) hoặc \(x=\frac{-4-3\sqrt{6}}{2}\)(Loại)
5. Với y = 5 suy ra phương trình : \(2x^2+8x+8=0\Leftrightarrow x^2+4x+4=0\Rightarrow x=-2\)(Loại)
Vậy kết luận : Tập nghiệm của phương trình là : \(\left(x;y\right)=\left(4;1\right)\)