K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6

Đây là phương trình Pell loại 2 nhé bạn.

\(x^2-5y^2=-1\)    (1)

Xét phương trình liên kết với pt đã cho là \(x^2-5y^2=1\)     (2)

Ta thấy \(\left(9,4\right)\) là nghiệm nguyên dương nhỏ nhất của pt (2)

Xét hệ phương trình: \(\left\{{}\begin{matrix}9=x^2+5y^2\\4=2xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+5y^2=9\\xy=2\end{matrix}\right.\)   (3). Hệ (3) có nghiệm nguyên dương duy nhất là \(\left(2,1\right)\)

Xét các dãy số nguyên dương \(\left\{x_n\right\},\left\{y_n\right\}\) xác định bởi:

\(\left\{{}\begin{matrix}x_0=2,x_1=38,x_{n+2}=18x_{n+1}-x_n\\y_0=1,y_1=17,y_{n+2}=18y_{n+1}-y_n\end{matrix}\right.\) với \(n\inℕ\)

Khi đó mọi cặp số \(\left(x_n,y_n\right)\) đều là nghiệm của pt đã cho.

VD: Chọn \(n=0\) thì \(\left(x_n,y_n\right)=\left(x_0;y_0\right)=\left(2,1\right)\). Thử lại: \(2^2-5.1^2=-1\) (thỏa mãn) 

 Chọn \(n=1\) thì \(\left(x_n;y_n\right)=\left(x_1;y_1\right)=\left(38;17\right)\). Thử lại:

\(38^2-5.17^2=-1\) (thỏa mãn)

 

23 tháng 6

 Dạng tổng quát của pt này là \(x^2-dy^2=-1\)     (1) với \(d\) là số nguyên dương không chính phương. 

 Khi đó xét pt liên kết với (1) là \(x^2-dy^2=1\)    (2). Gọi \(\left(a,b\right)\) là nghiệm nguyên dương nhỏ nhất của (2). 

 Xét hệ pt \(\left\{{}\begin{matrix}a=x^2+dy^2\\b=2xy\end{matrix}\right.\)  (3). Nếu hệ (3) có nghiệm nguyên dương thì (1) cũng có nghiệm nguyên dương. Gọi \(\left(u,v\right)\) là nghiệm nguyên dương duy nhất của (3) thì xét dãy số nguyên dương \(\left\{x_n\right\},\left\{y_n\right\}\) xác định bởi: 

 \(\left\{{}\begin{matrix}x_0=a,x_1=u^3+3duv^2,x_{n+2}=2ax_{n+1}-x_n\\y_0=b,y_1=dv^3+3u^2v,y_{n+2}=2ay_{n+1}-y_n\end{matrix}\right.\) với \(n\inℕ\)

Khi đó \(\left(x_n,y_n\right)\) là tất cả các nghiệm nguyên dương của pt đã cho.

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

8 tháng 6 2020

Ta có: 2x2y - 1 = x2 + 3y

<=> 4x2y - 2 - 2x2 - 6y = 0

<=> 2x2(2y - 1) - 3(2y - 1) = 5

<=> (2x2 - 3)(2y - 1) = 5 = 1.5

Lập bảng:

2x2 - 3 1 5
 2y - 1 5 1
  x\(\pm\sqrt{2}\)(loại)2
  y  1

Vậy nghiệm (x;y) của phương trình là (2; 1)

\(2x^2y-1=x^2+3y\)

\(\Leftrightarrow4x^2y-2=2x^2+6y\)

\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)

Đến đây đơn giản rồi :))))

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))

15 tháng 6 2021

giúp mình với , mình cảm ơn ạ ! 

16 tháng 6 2021

\(pt:x^2-2mx+m-4=0\left(1\right)\)

\(\Delta'=\left(-m\right)^2-\left(m-4\right)=m^2-m+4=m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}-\dfrac{1}{4}+4\)

\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{6}>0\left(\forall m\right)\)

=> \(pt\left(1\right)\) luôn có 2 nghiệm phân biệt x1,x2 \(\forall m\)

\(Theo\) \(\)Vi ét\(=>\left\{{}\begin{matrix}x1+x2=2m\left(1\right)\\x1x2=m-4\left(2\right)\end{matrix}\right.\)

từ(1)

với \(x1x2=m-4=>m=x1x2+4\)

thay \(m=x1x2+4\) vào (1)\(\)\(=>x1+x2=2\left(x1x2+4\right)\)

\(< =>x1+x2=2x1x2+8\)

\(< =>x1+x2-2x1x2=8\)

\(< =>2x1+2x2-4x1x2=16\)

\(=>2x1\left(1-2x2\right)-\left(1-2x2\right)=15\)

\(< =>\left(2x1-1\right)\left(1-2x2\right)=16\)(3)

để (3) nguyên \(< =>\left(2x1-1\right)\left(1-2x2\right)\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

đến đây bạn tự lập bảng giá trị để tìm x1,x2 rồi từ đó thay thế x1,x2 vào(2) để tìm m nhé (mik ko làm nữa dài lắm)

 

 

 

 

 

 

 

 

 

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

4 tháng 7 2021

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

4 tháng 7 2021

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)