K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng A. m = 0 B. m \(\le\) 0 C. m \(\in\left\{0;4\right\}\) D. m \(\ge\) 4 Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\) A. m \(\ge1\) B. \(m\le1\) C. \(0\le m\le1\) D. \(0\le m\le\frac{3}{4}\) Câu...
Đọc tiếp

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng

A. m = 0

B. m \(\le\) 0

C. m \(\in\left\{0;4\right\}\)

D. m \(\ge\) 4

Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)

A. m \(\ge1\)

B. \(m\le1\)

C. \(0\le m\le1\)

D. \(0\le m\le\frac{3}{4}\)

Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1

A. M = 5

B. M = 4

C. M = 6

D. M = 7

Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?

A. Hàm số đồng biến trên khoảng (0;1)

B. Hàm số đồng biến trên R \(|\left\{1\right\}\)

C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)

D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )

A. \(m\in\left(-1;2\right)\)

B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

C. m \(\in(-\infty;-1]\cup[2;+\infty)\)

D. m \(\in(-\infty;0]\cup[1;+\infty)\)

2
NV
16 tháng 10 2020

1.

Xét \(x^2-mx+m=0\) (1)

\(\Delta=m^2-4m\)

Hàm có đúng 1 tiệm cận đứng khi:

TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

Th2: (1) có 1 nghiệm \(x=1\)

\(\Leftrightarrow1-m+m=0\left(ktm\right)\)

Vậy \(m\in\left\{0;4\right\}\)

2.

\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)

Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)

Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)

NV
16 tháng 10 2020

3.

\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)

\(\Rightarrow M=6\)

4.

\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

5.

\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)

\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

Chọn A

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

19 tháng 4 2016

Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)

Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.

Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\)  hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng

\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)

Kết hợp trường hợp 1 và trường hợp 2 ta có 

\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)

 
19 tháng 4 2016

Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)

với mọi \(x\in\left(0;+\infty\right)\) (*)

Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)

\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow m\le x^2-2x\)với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)

\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)

\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1

Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$

 

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A