K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

30 tháng 8 2017

Đáp án B

 

 

Do

 

25 tháng 7 2018

Chọn D

Cách1:

Ta có: .

Vậy

.

Đặt .

Vậy .

Ta có:. Vậy .

y'= \(4x^3-4\left(m-1\right)x\)

Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)

\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)

Vậy \(m\in\) (−\(\infty\);2]

1 tháng 10 2017

Đáp án A

 

.

14 tháng 12 2019

 Đáp án B

Phương pháp:

Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.

Cách giải:

Đề thi Học kì 1 Toán 12 có đáp án (Đề 1)

Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)

26 tháng 7 2017

Đáp án D.

Ta có

y ' = 3 e 3 x - m - 1 e x . 2017 2018 e 3 x - m - 1 e x + 1 . ln 2017 2018

Để hàm số đồng biến trên (1;2)

⇔ y ' ≥ 0 ; ∀ x ∈ 1 ; 2 ⇔ 3 e 3 x - m - 1 e x ≤ 0 ; ∀ x ∈ 1 ; 2 .

⇔ 3 e 2 x - m + 1 ≤ 0 ; ∀ x ∈ 1 ; 2

⇔ m - 1 ≥ 3 e 2 x ; ∀ x ∈ 1 ; 2

⇔ m ≥ 3 e 4 + 1 .

3 tháng 4 2019

13 tháng 2 2017

Chọn B

23 tháng 9 2017

Chọn A.

Ta có:  y ' = 2 x x 2 + 1 - m

 

Hàm số y = ln x 2 + 1 - m x + 1   đồng biến trên khoảng( -∞; +∞). Khi và chỉ khi y’ ≥0 với mọi . ⇔ g ( x ) = 2 x x 2 + 1 ≥ m ,   ∀ x ∈ - ∞ ; + ∞

 

Ta có 

 

Bảng biến thiên:

Dựa vào bảng biến thiên ta có: