Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)\(A=\sqrt{x^2-3}\) ,Để biểu thức có nghĩa
\(=>x^2-3>=0< =>x^2>=3.\)\(< =>-\sqrt{3}< =x< =\sqrt{3}\)
+)\(B=\frac{1}{\sqrt{x^2}+4x-5}\)
xét 2 th
th1)x>=0
=>\(B=\frac{1}{x+4x-5}=\frac{1}{5x-5}\)
để biểu thức có nghĩa =>\(5x-5\)khác 0<=>x khác 1
th2>x<0
=>\(B=\frac{1}{-x+4x-5}=\frac{1}{3x-5}\)
biểu thức có nghĩa =>3x-5 khác 0<=>x khác \(\frac{5}{3}\)
vậy với x khác 1, \(\frac{5}{3}\) thì B có nghĩa
+) \(C=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
để C có nghĩa
=>\(\sqrt{x-\sqrt{2x-1}}>0< =>x>\sqrt{2x-1}\),\(2x-1>=0< =>x^2>2x-1,x>=\frac{1}{2}\)(1)
=>\(x^2-2x+1>0< =>\left(x-1\right)^2>0=>\orbr{\begin{cases}x>1\\x< 1\end{cases}}\)(2)
từ (1) và (2)=>x>1
vậy với x>1 thì C có nghĩa
+)D=\(\frac{1}{1-\sqrt{x^2}-3}\)
xét 2 th
th1)x>=0
=>\(D=\frac{1}{1-x-3}=\frac{1}{-x-2}\)
để D có nghĩa =>-x-2 khác 0<=>x khác -2
th2)x<0
=>\(D=\frac{1}{1-\left(-x\right)-3}=\frac{1}{x-2}\)
Để D có nghĩa => x-2 khác 0<=> x khác 2
Vậy với x khác 2,-2 thì D có nghĩa
h)
ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)
k)
ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)
m)
ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)
Lời giải:
a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$
b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)
c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$
d) ĐK:
\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)
e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$
f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)
\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)
\(2\sqrt{x}-1>0\);\(4x>0\)
\(\Rightarrow x>0\)thì \(A>A^2\)
a, Biểu thức \(2-\sqrt{1-4x}\) có nghĩa : \(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)
\(b,\sqrt{2x^2+1}+\frac{2}{3-4x}\)
\(\Rightarrow\hept{\begin{cases}2x^2+1>0\\3-4x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}2x^2>-1\\4x\ne3\end{cases}}\Rightarrow\hept{\begin{cases}x^2>-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}\Rightarrow x\ne\frac{3}{4}\)
\(c,\sqrt{\frac{-3}{2x-2}}\) \(\Rightarrow\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)
d, TT
a, Để biểu thức trên có nghĩa :
\(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)
b, Để biểu thức trên có nghĩa :
\(3-4x\ne0\) Vì \((2x^2+1)>0,\forall x\inℝ\)
\(\Leftrightarrow x\ne\frac{3}{4}\)
c, Để biểu thức trên có nghĩa :
\(\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)
d, Tương tự
\(a,\frac{1}{\sqrt{5x+15}}\)
Để biểu thức trên có nghĩa :
\(\Rightarrow\sqrt{5x+15}\ge0\)
\(\Rightarrow5\left(x+3\right)\ge0\)
\(\Rightarrow x\ge-3\)
Vậy....