Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Chọn B.
Phương pháp:
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.
Đáp án C
log 2 2 2 x − 2 m + 1 log 2 x − 2 < 0 ⇔ 1 + log 2 x 2 − 2 m + 1 log 2 x − 2 < 0
Đặt t = log 2 x ta được 1 + t 2 − 2 m + 1 t − 2 < 0 ⇔ t 2 − 2 m t − 1 < 0 ⇔ t ∈ m − m 2 + 1 ; m + m 2 + 1
x ∈ 2 ; + ∞ ⇔ t ∈ 1 2 ; + ∞
⇒ m + m 2 + 1 > 1 2 ⇔ m > − 3 4
Đáp án C
6 x − 3 − m 2 x − m = 0 ⇔ m = 6 x + 3.2 x 2 x + 1
Xét hàm số f x = 6 x + 3.2 x 2 x + 1 trên khoảng 0 ; 1
f ' x = 6 x .2 x ln 6 − ln 2 + 6 x ln 6 + 3.2 x ln 2 2 x + 1 2 > 0 do đó hàm số y = f x đồng biến trên khoảng 0 ; 1 .
Phương trình f x = m có nghiệm trong khoảng 0 ; 1 ⇔ f 0 < m < f 1 ⇔ 2 < m < 4 .
Chọn D