K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Để hàm số đồng biến trên R thì:

\(y'=(m+2)x^2+2mx+1\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi :

\(\left\{\begin{matrix} m+2> 0\\ \Delta'=m^2-m-2\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m> -2\\ (m+1)(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> -2\\ -1\leq m\leq 2\end{matrix}\right.\)

\(\Leftrightarrow -1\leq m\leq 2\)

Đáp án B

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

21 tháng 6 2021

undefined

15 tháng 2 2017

Đáp án A

10 tháng 5 2022

lo

 

26 tháng 7 2017

Đáp án D.

Ta có

y ' = 3 e 3 x - m - 1 e x . 2017 2018 e 3 x - m - 1 e x + 1 . ln 2017 2018

Để hàm số đồng biến trên (1;2)

⇔ y ' ≥ 0 ; ∀ x ∈ 1 ; 2 ⇔ 3 e 3 x - m - 1 e x ≤ 0 ; ∀ x ∈ 1 ; 2 .

⇔ 3 e 2 x - m + 1 ≤ 0 ; ∀ x ∈ 1 ; 2

⇔ m - 1 ≥ 3 e 2 x ; ∀ x ∈ 1 ; 2

⇔ m ≥ 3 e 4 + 1 .

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Hỏi mãi chiếm hết cả web ko trả lời nữa 

 

14 tháng 9 2023

\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)

Chọn a