Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
Đáp án C
Ta có f x = 2 x + m − 1 x + 1 → f ' x = 3 − m x + 1 2 ; ∀ x ∈ 1 ; 2
TH1: Với m < 3 , suy ra f ' x > 0 ; ∀ ∈ 1 ; 2 ⇒ f 2 = 1 ⇔ 3 + m 3 = 1 ⇔ m = 0 (nhận)
TH2: Với m>3 suy ra f ' x < 0 ; ∀ ∈ 1 ; 2 ⇒ f 1 = 1 ⇔ 1 + m 2 = 1 ⇔ m = 1 (loại)
Vậy m = 0 là giá trị cần tìm
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
ta có
\(\Delta\)=( -m )2 -4.1.( -3m-1) =m2 +12m+4
Để phương trình >0
\(\Leftrightarrow\) \(\Delta\)>0
\(\Leftrightarrow\) m2 +12m+4>0
\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)
Đáp án B
Điều kiện x > 0.
Đặt t = log 3 x
Ta có t 2 − m − 2 t + 3 m − 1 = 0 1
Phương trình có 2 nghiệm phân biệt ⇔ 1 có 2 nghiệm
⇒ Δ = m + 2 2 − 4 3 m − 1 > 0 ⇔ m > 4 + 2 2 m < 4 − 2 2 *
Khi đó t 1 + t 2 = log 3 x 1 + log 3 x 2 = log 3 x 1 x 2 = m + 2 ⇔ m + 2 = log 3 27 ⇒ m = 1
Kết hợp với điều kiện * ⇒ m = 1