Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=0\) không thỏa mãn
Với \(m\ne0\):
\(y'=4mx^3-2\left(m+1\right)x=2x\left(2mx^2-\left(m+1\right)\right)\)
Hàm có 3 cực trị khi:
\(\dfrac{m+1}{m}>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
Chọn D.
Tập xác định: D = ℝ
Ta có
Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ nên nghịch biến trên tập xác định.
Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi
Vậy với - 2 7 ≤ m ≤ 1 thì hàm số y = ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5 nghịch biến trên tập xác định.
Chọn C
Ta có
nên hàm số có 3 điểm cực trị khi m > 1.
Với đk m > 1 đồ thị hàm số có 3 điểm cực trị là:
Ta có:
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2
<=> –x2 + mx + 2m + 1 > 0 ∀ x ∈ 1 ; 2
X é t g x = x 2 - 1 x + 2 v ớ i x ∈ 1 ; 2 c ó :
g x = x 2 - 1 x + 2 = x - 2 + 3 x + 2
⇒ g ' x = 1 - 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g(x) đồng biến trên khoảng (1;2)
⇒ m ≥ g 2 = 3 4 là giá trị cần tìm.