Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0
Đáp án C.
Phương trình có hoành độ giao điểm của d và (C):
x 3 + 2 m x 2 + ( m + 3 ) x + 4 = x + 4 ⇔ x 2 + 2 m x + ( m + 2 ) = 0
Để d cắt (C) tại 3 điểm phân biệt A(0;4) và C thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2 khác 0
⇔ 0 2 + 2 m . 0 + m + 2 ≢ 0 ∆ ' = m 2 - m - 2 > 0 ⇔ m + 2 ≢ 0 ( m + 1 ) ( m - 2 ) > 0 ⇔ m ≢ - 2 m > 2 m < - 1 ⇔ m > 2 m < - 1 m ≢ - 2 (1)
Giả sử B x 1 ; x 1 + 4 và B x 2 ; x 2 + 4 với x 1 , x 2 là hai nghiệm của (*)
Suy ra B C = 2 x 1 - x 2 và theo định lí Vi-ét: x 1 + x 2 = - 2 m x 1 x 2 = m + 2
Ta có S ∆ M B C = 1 2 d ( M ; B C ) . B C = 1 2 . 1 - 3 + 4 2 . 2 x 1 - x 2 = x 1 - x 2
Từ giả thiết ta có S ∆ M B C = 4 ⇔ x 1 - x 2 = 4 ⇔ x 1 - x 2 2 = 16
⇔ x 1 + x 2 2 - 4 x 1 x 2 = 16 ⇔ ( - 2 m ) 2 - 4 ( m + 2 ) - 16 = 0 ⇔ 4 m 2 - 4 m - 24 = 0
m = - 2 m = 3 . Đối chiếu với điều kiện (1), chỉ có m = 3 là thỏa mãn
Đáp án B
Hàm số xác định với mọi x ∈ ( 1 ; 2 ) ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2
⇔ m x + 2 > x 2 − 1 ∀ x ∈ 1 ; 2 ⇔ m > x 2 − 1 x + 2 ∀ x ∈ 1 ; 2 ⇔ m > M a x 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 với x ∈ 1 ; 2 ta có
g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g x đồng biến trên khoảng 1 ; 2 ⇒ m ≥ g 2 = 3 4 là giá trị cần tìm
Đáp án D.
Hàm số xác định với mọi x ∈ ℝ ⇔ x 2 - 2 m x + 4 > 0 , ∀ x ∈ ℝ ⇒ ∆ ' = m 2 - 4 < 0 ⇔ - 2 < m < 2 .
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2 ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2 .
⇔ m > x 2 − 1 x + 2 = g x ∀ x ∈ 1 ; 2 ⇔ m > M ax 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó lim x → 2 f x = 3 4 . Vậy m ≥ 3 4 là giá trị cần tìm.