Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
Thực hiện quy đồng ta có :
9xy−1y=2+3x⇔9−x=2xy+3y9xy−1y=2+3x⇔9−x=2xy+3y
⇔4xy+2x+6y+3=21⇔4xy+2x+6y+3=21
Do x,y nguyên dương nên ta có:
⇔(2x+1)(2x+3)=21⇔\hept{2x+1=32y+3=7⇔\hept{x=1y=2
K mk vs đk ạ
\(\frac{9}{xy}-\frac{1}{y}=2+\frac{3}{x}\Rightarrow9-x=2xy+3y\Rightarrow y=\frac{9-x}{2x+3}\)
\(\Rightarrow2y=\frac{18-2x}{2x+3}=\frac{21}{2x+3}-1\inℕ^∗\Leftrightarrow\frac{21}{2x+3}\inℕ^∗,\frac{21}{2x+3}>1\)
\(\Rightarrow2x+3=1;3;7\Rightarrow x=-1;0;2\)----> Nhận \(x=2\Rightarrow y=\frac{9-x}{2x+3}=1\)
Vậy phương trình có nghiệm nguyên dương: (2;1).
Bớt 52p ở mỗi vễ: \(q^2=2013\Rightarrow q=\sqrt{2013}\) (loại)
Suy ra không giá trị q nguyên tố nào thỏa mãn.
Suy ra vô nghiệm.
Cách khác:Do VT chia 5 dư 3 suy ra VP chia 5 dư 3.
Do 52p chia hết cho 5 suy ra q2 chia 5 dư 3.
Mà một số chính phương khi chia cho 5 không dư 3.
Suy ra không có số nguyên tố p,q thỏa mãn.
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-\left(a^2+b^2+c^2\right)\)
Ta lại có : \(\left(a^2+b^2+c^2\right)\ge0\)
\(\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(2>0\right)\)
\(\Rightarrowđpcm\)
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha