\(\hept{\begin{cases}a^3+3b=c^3\\b^3+3a=d^3\end{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt

2 tháng 3 2018

Ko có bạn ơi :<

14 tháng 6 2020

Sửa đề \(\hept{\begin{cases}n^2=a+b\\n^3+2=a^2+b^2\end{cases}}\)

Có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow n^4\le2\left(n^3+2\right)\) hay \(n^3\left(n-2\right)-4\le0\)

Nếu \(n\ge3\)thì \(n^3\left(n-2\right)-4\ge n^3-4>0\left(ktm\right)\Rightarrow n=\left\{0;1;2\right\}\)

Với n=0;1 không có số nguyên a,b thỏa mãn

Với n=2 \(\Rightarrow\orbr{\begin{cases}a=1;b=3\\a=3;b=1\end{cases}\left(tm\right)}\)

Vậy (n,a,b)={(2;1;3);(2;3;1)}

14 tháng 6 2020

\(a^2+b^2=n^3+2\ge0\)\(\Rightarrow\)\(n\ge-1\)

Quỳnh xét thiếu n=-1

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

10 tháng 8 2019

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI