Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
12(3a2 + 3b2 - 7a - 7b + 4) = 0
<=> (6a - 7)2 + (6b - 7)2 = 50
<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)
a, => p^2 = 5q^2 + 4
+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )
+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5
=> p^2 = 5q^2 + 4 chia hết cho 3
=> p chia hết cho 3 ( vì 3 là số nguyên tố )
=> p = 3 => q = 1 ( ko t/m )
Vậy p=7 và q=3
Tk mk nha
\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)
đề thế cơ mà , làm t nghĩ mà đell nghĩ đc j .
làm này .
Không mất tính tổng quát
đặt \(x=a>0,y=2^{a-3}+2^{-a-1}>0,z=a^2+1>0,t=1>0\)
khi đó phương trình trở thành
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}=\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(1\right)\)
Mặt khác ta cũng có :\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(2) zới mọi \(x,y,z,t>0\)
\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)( biến đổi từ cái trên nhá )
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)
\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+y^2t^2+2xyzt\Leftrightarrow\left(yz-xt\right)^2\ge0\)(luôn đúng zới mọi x,y,z,t > 0)
zậy từ (1) zà (2) xảy ra khi zà chỉ khi yz=xt
=>\(\left(2^{a-3}+2^{-a-1}\right)\left(a^2+1\right)=a\Leftrightarrow\left(2^{a-3}+2^{-a-1}\right)=\frac{a}{a^2+1}\left(3\right)\)(zì \(a^2+1>0\)
mà lại có \(\frac{a}{a^2+1}\le\frac{1}{2}\)(zì \(\left(a-1\right)^2\ge0\), dấu "=" xảy ra khi a=1 (4)
zà \(\left(2^{a-3}+2^{-a-1}\right)=\frac{2^a}{8}+\frac{1}{2.2^a}\ge\frac{1}{2}\)(theo cô-si nha) ,dấu "=" xảy ra khi a=1 (5)
zậy từ (3) , (4) , (5) \(=>a=1\)là giá trị nguyên dương duy nhất cần tìm
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)