Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x=3(x+1)-3 chia hết cho x+1 khi và chỉ khi 3 chia hết cho x+1.
Do đó x+1 thuộc {-3;-1;1;3}
Vậy x=-4;-2;0;2
3x=3(x+1)-3 chia hết cho x+1 khi và chỉ khi 3 chia hết cho x+1.
Do đó x+1 thuộc {-3;-1;1;3}
Vậy x=-4;-2;0;2
Ta có x+5 chia hết cho x+2
=>x+5-(x+2) chia hết cho x+2
=>x+5-x-2 chia hết cho x+2
=>3 chia hết cho x+2=>x+2 thuộc ước của 3
=>x+2=-3,-1,1,3
=>x=-5,-3,-1,1
x+5:x+2
=>x+2+3:x+2
=>(x+2)+3:x+2
=>3:(x+2)=>x+2 là ước của 3
Ư(3)={-1;1;3;-3}
lập bảng:
x+2|-1|1|3|-3|
x|0|2|-2|4|
vậy x=0;2;-2;4
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
Ta có: x2 + 7x +2 = x.(x + 7) + 2
x2 +7x +2 chia hết cho x + 7
=> x.(x+7) + 2 chia hết cho x +7
=> 2 chia hết cho x + 7
=> x +7 thuộc ước của 2
=> x + 7 thuộc tập hợp các phần tử : -2;-1;1;2
=> x thuộc tập hợp các phần tử -9;-8;-6;-5
1. Ta có x-3 chia hết cho x+2
=>x-3-x-2 chia hết cho x+2
=>-5 chia hết cho x+2=> x+2 thuộc ước của -5
=>x+2=-5,-1,1,5
=>x=-7,-3,-1,3
2.Ta có 2x-7 chia hết cho x-2
=>2x-7-2(x-2) chia hết cho x-2
=>2x-7-2x+4 chia hết cho x-2
=>-3 chia hết cho x-2=> x-2 thuộc ước của -3
=>x-2=-3,-1,1,3
=>x=-1,1,3,5
Ta có : \(\frac{8n+3}{2n-1}=4+\frac{7}{2n-1}\)
nên để \(8n+3\) chia hết cho \(2n-1\) thì \(7\)phải chia hết cho \(2n-1\), tức \(n\ne\frac{1}{2}\); \(n=1;n=4;\)
Vậy tập hơp các số nguyên thỏa mãn ycbt là \(n\in\left\{1;4\right\}\)
Để 8n + 3 chia hết cho 2n - 1 <=> \(\frac{8n+3}{2n-1}\) là số nguyên
Ta có :\(\frac{8n+3}{2n-1}=\frac{4\left(2n-1\right)+7}{2n-1}=\frac{4\left(2n-1\right)}{2n-1}+\frac{7}{2n-1}=4+\frac{7}{2n-1}\)
Để \(4+\frac{7}{2n-1}\) là số nguyên <=> \(\frac{7}{2n-1}\) là số nguyên
=> 2n - 1 \(\in\) Ư ( 7 ) => Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
Ta có : 2n - 1 = - 7 <=> 2n = - 6 => n = - 3 ( TM )
2n - 1 = - 1 <=> 2n = 0 => n = 0 ( TM )
2n - 1 = 1 <=> 2n = 2 => n = 1 ( TM )
2n - 1 = 7 <=> 2n = 8 => n = 4 ( TM )
Vậy n \(\in\) { - 3 ; 0 ; 1 ; 4 }
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
=> x thuộc tập {-6;-2;0;4}
Vậy tập các số nguyên {-6;-2;0;4} là tập các số cần tìm
A={4;9;14;...}