Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp:
Gọi z = a + b i , sử dụng công thức tính môđun của số phức.
Cách giải:
Giả sử z = x + y i , x , y ∈ R
Theo đề bài ta có:
z + 3 − 4 i = 5 ⇔ x + 3 2 + y − 4 2 = 5 ⇔ x + 3 2 + y − 4 2 = 25
Vậy, tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là đường tròn tâm I − 3 ; 4 , R = 5.
Đáp án A.
Cách 1: w = 1 + i 3 z + 2 ⇔ z = w - 2 1 + i 3 . Từ đó
z - 1 ≤ 2 ⇔ w - 2 1 + i 3 - 1 ≤ 2 ⇔ w - 3 - i 3 ≤ 2 1 + i 3 ⇔ w - 3 + i 3 ≤ 4 .
Vậy tập hợp cần tìm là hình tròn tâm I( 3 ; 3 ) bán kính R = 4. Chọn đáp án A.
Cách 2: Gọi w = x + y i ; x , y ∈ ℝ . Khi đó ta có
w = 1 + i 3 z + 2 ⇔ x + y i = 1 + i 3 z + 2 ⇔ x - 2 + y i 1 + i 3 = z
⇒ z - 1 = x - 2 + y i 1 + i 3 - 1 = x - 3 - y - 3 i 1 + i 3 ⇒ z - 1 = x - y 3 + i y - x 3 + 4 3 4
z - 1 ≤ 2 ⇒ x - y 3 2 + y - x 3 + 4 3 2 ≤ 8 ⇒ x - 3 2 + y - 3 2 ≤ 16 .
Vậy tập hợp cần tìm là hình tròn tâm I( 3 ; 3 ) bán kính R = 4. Chọn đáp án A.
Bài toán tổng quát: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số w = α z + β trong đó z là số phức tùy ý thỏa mãn z - z 0 ≤ R ( z 0 , α ≢ 0 , β là những số phức cho trước, R là số thực dương cho trước).
Tương tự như lời giải trên, ta có tập hợp cần tìm là hình tròn có tâm là điểm biểu diễn số phức α z 0 + β , với bán kính bằng R α .