Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp:
Gọi z = a + b i , sử dụng công thức tính môđun của số phức.
Cách giải:
Giả sử z = x + y i , x , y ∈ R
Theo đề bài ta có:
z + 3 − 4 i = 5 ⇔ x + 3 2 + y − 4 2 = 5 ⇔ x + 3 2 + y − 4 2 = 25
Vậy, tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là đường tròn tâm I − 3 ; 4 , R = 5.
Đáp án C
Đặt w = x + yi , x ; y ∈ ℝ . Số phức w được biểu diễn bởi điểm M(x;y).
Ta có:
w = 3 + 4 i z + i = x + yi
⇔ z = x + y − 1 i 3 + 4 i = x + y − 1 i 3 − 4 i 25 = 3 x + 4 y − 4 + − 4 x + 3 y − 3 i 25
⇒ z = 1 25 3 x + 4 y − 4 2 + − 4 x + 3 y − 3 2 = 4
⇔ 3 x + 4 y − 4 2 + − 4 x + 3 y − 3 2 = 100 2
⇔ 3 x + 4 y 2 + − 4 x + 3 y 2 − 8 3 x + 4 y + 16 − 6 − 4 x + 3 y + 9 = 10000
Vậy số phức w được biểu diễn bởi đường tròn tâm I(0;1), bán kính R = 20 và có phương trình: x 2 + y − 1 2 = 400 .
Đáp án A.
Cách 1: w = 1 + i 3 z + 2 ⇔ z = w − 2 1 + i 3 . Từ đó
z − 1 ≤ 2 ⇔ w − 2 1 + i 3 − 1 ≤ 2 ⇔ w − 3 − i 3 ≤ 2 1 + i 3 ⇔ w − 3 + i 3 ≤ 4
Vậy tập hợp cần tìm là hình tròn tâm I 3 ; 3 bán kính R = 4 . Chọn đáp án A.
Cách 2: Gọi w = x + y i ; x , y ∈ ℝ . Khi đó ta có
w = 1 + i 3 z + 2 ⇔ x + y i = 1 + i 3 z + 2 ⇔ x − 2 + y i 1 + i 3 = z
⇒ z − 1 = x − 2 + y i 1 + i 3 − 1 = x − 3 − y − 3 i 1 + i 3 ⇒ z − 1 = x − y 3 + i y − x 3 + 4 3 4
z − 1 ≤ 2 ⇒ x − y 3 2 + y − x 3 + 4 3 2 ≤ 8 ⇒ x − 3 2 + y − 3 2 ≤ 16 .
Vậy tập hợp cần tìm là hình tròn tâm I 3 ; 3 bán kính R = 4 . Chọn đáp án A.
Bài toán tổng quát: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số w = α z + β trong đó z là số phức tùy ý thỏa mãn z − z 0 ≤ R ( z 0 , α ≠ 0 , β là những số phức cho trước, R là số thực dương cho trước).
Tương tự như lời giải trên, ta có tập hợp cần tìm là hình tròn có tâm là điểm biểu diễn số phức α z 0 + β , với bán kính bằng R α .