Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{2}+\frac{1}{34}=\frac{9}{17}\); \(\frac{15}{17}-\frac{3}{17}=\frac{12}{17}\)
Vậy ta có \(\frac{9}{17}\)\(\le\frac{a}{17}
\(\Leftrightarrow\dfrac{17+1}{34}< =\dfrac{a}{17}< \dfrac{12}{17}\)
=>9<=a<12
hay \(a\in\left\{9;10;11\right\}\)
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
Bạn chỉ gửi 1 bài thôi chứ nhiều quá làm mỏi tay lắm
Làm bài 1 trước
\(4\cdot(-5)^2+2\cdot(-5)-20\)
\(=4\cdot25+2\cdot(-5)-20\)
\(=100+(-10)-20=100-30=70\)
\(35\cdot(14-10)-14\cdot(35-10)\)
\(=35\cdot14-35\cdot10-14\cdot35-14\cdot10\)
\(=35\cdot14-14\cdot35-35\cdot10-14\cdot10\)
\(=35\cdot10-14\cdot10=(35-14)\cdot10=210\)
\(3\cdot(-5)^2+2\cdot(-5)-20\)
Tương tự như ở câu trên
\(34\cdot(15-10)-15\cdot(34-10)\)
Tương tự như câu thứ 2
Câu cuối tự làm
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$