Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
f'(x) = 6sin5xcosx – 6cos5xsinx + 3(2sinxcos3x – 2cosxsin3x)
= 6sinxcosx(sin4x – cos4x + cos2x – sin2x)
= 6sinxcosx(sin2x – cos2x + cos2x – sin2x) = 0.
\(y=\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\)
\(\sin^6x+\cos^6x=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\\ =\left(\sin^2x+\cos^2x\right)^2-3\sin^2x\cdot\cos^2x=1-\dfrac{3}{4}\sin^22x\)
Do \(0\le\sin^22x\le1\Leftrightarrow\dfrac{3}{4}\cdot0\ge-\dfrac{3}{4}\sin^22x\ge-\dfrac{3}{4}\)
\(\Leftrightarrow1\ge1-\dfrac{3}{4}\sin^22x\ge1-\dfrac{3}{4}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4}{3}\ge\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)\ge\dfrac{1}{4}\cdot\dfrac{4}{3}=\dfrac{1}{3}\)
Ta có \(-1\le\cos4x\le1\)
\(\Leftrightarrow\dfrac{1}{3}-1-1\le\dfrac{4}{3}\left(\sin^6x+\cos^6x\right)+\cos4x-1\le\dfrac{4}{3}+1-1\\ \Leftrightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)
Vậy \(y_{min}=-\dfrac{5}{3};y_{max}=\dfrac{4}{3}\)
\(y=\dfrac{4}{3}\left(sin^6x+cos^6x\right)+cos4x-1\)
\(y=\dfrac{4}{3}\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)+cos4x-1\)
\(y=\dfrac{3}{2}cos4x-\dfrac{1}{6}\)
\(-1\le cos4x\le1\Rightarrow-\dfrac{5}{3}\le y\le\dfrac{4}{3}\)
\(y_{min}=-\dfrac{5}{3}\) khi \(cos4x=-1\)
\(y_{max}=\dfrac{4}{3}\) khi \(cos4x=1\)
(1) trở thành 4t2 – 2t -6 – m = 0 (2); △ ' = 25 + 4 m .
Để (1) vô nghiệm, ta sẽ tìm m sao cho (1) có nghiệm rồi sau đó phủ định lại.
(1) có nghiệm thì (2) phải có nghiệm thoả t o ∈ - 1 ; 1
Nếu , (2) có nghiệm kép nên thoả (1) có nghiệm.
Nếu , khi đó (2) phải có hai nghiệm phân biệt thoả
a: -1<=sinx<=1
=>5>=-5sinx>=-5
=>11>=-5sinx+6>=1
=>1<=y<=11
\(y_{min}=1\) khi sin x=1
=>x=pi/2+k2pi
\(y_{max}=11\) khi sin x=-1
=>x=-pi/2+k2pi
b: \(-1< =cosx< =1\)
=>\(1>=-cosx>=-1\)
=>\(-3>=-cosx-4>=-5\)
=>\(-3>=y>=-5\)
\(y_{min}=-5\) khi cosx=1
=>x=k2pi
\(y_{max}=-3\) khi cosx=-1
=>x=pi+k2pi
c: \(-1< =cosx< =1\)
=>\(-\sqrt{3}< \sqrt{3}\cdot cosx< =\sqrt{3}\)
=>\(-\sqrt{3}+8< =y< =\sqrt{3}+8\)
\(y_{min}=-\sqrt{3}+8\) khi cosx=-1
=>x=pi+k2pi
\(y_{max}=\sqrt{3}+8\) khi cosx=1
=>x=k2pi
d: \(-1< =cos3x< =1\)
=>\(1>=-cos3x>=-1\)
=>\(16>=y>=14\)
y min=14 khi cos3x=1
=>3x=k2pi
=>x=k2pi/3
y max=16 khi cos3x=-1
=>3x=pi+k2pi
=>x=pi/3+k2pi/3
e: -1<=sin6x<=1
=>-1+2024<=sin6x+2024<=1+2024
=>2023<=y<=2025
y min=2023 khi sin6x=-1
=>6x=-pi/2+k2pi
=>x=-pi/12+kpi/3
y max=2025 khi sin6x=1
=>6x=pi/2+k2pi
=>x=pi/12+kpi/3
\(-1\le sin6x\le1\Rightarrow0\le y\le2\)
\(\Rightarrow\) Hàm \(y=sin6x+1\) có 3 giá trị nguyên là \(y=\left\{0;1;2\right\}\)
Chọn C