Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có A = \(a^4-2a^3+3a^2-4a+5\)
\(\Leftrightarrow A=\left(a^2\right)^2-2a^2.a+a^2+2a^2-4a+2+3\)
\(\Leftrightarrow A=\left(a^2-a\right)^2+\left(\sqrt{2}.a-\sqrt{2}\right)^2+3\)
\(\Rightarrow\) A luôn luôn lớn hơn hoặc bằng 3 với mọi giá trị của x
=> giá trị nhỏ nhất của A = 3 khi
( \(\left(a^2-a\right)^2=0\) \(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\) )
\(\Rightarrow\) a= 0 hoặc a= 1
Lời giải:
a) ĐK: $x\neq \pm 2$
b)
\(P=\left[\frac{x^2+2x+4-(x-2)(x+1)}{(x-2)(x^2+2x+4)}-\frac{3}{(x-2)(x^2+2x+4)}\right].\frac{x^2+2x+4}{x^2-4}\)
\(=\frac{3x+6-3}{(x-2)(x^2+2x+4)}.\frac{x^2+2x+4}{(x-2)(x+2)}=\frac{3x+3}{(x+2)(x-2)^2}\)
c)
Để $P$ nhận giá trị dương thì $\frac{3(x+1)}{(x+2)(x-2)^2}>0$. Mà $(x-2)^2>0$ với $x\neq \pm 2$ nên cần tìm $x$ để $\frac{3(x+1)}{x+2}>0$
\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} 3(x+1)>0\\ x+2>0\end{matrix}\right.\\ \left\{\begin{matrix} 3(x+1)< 0\\ x+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>-1\\ x>-2\end{matrix}\right.\\ \left\{\begin{matrix} x< -1\\ x< -2\end{matrix}\right.\end{matrix}\right.\) hay \(\left[\begin{matrix} x>-1\\ x< -2\end{matrix}\right.\)
Vậy $x>-1; x\neq 2$ hoặc $x< -2$
Bài 2:
=>ax^3-ax^2-2ax+(b+a)x^2-(b+a)x-2(b+a)+5x+(b+a+2a)x-22+2(b+a) chia hết cho x^2-x-2
=>b+3a+5=0 và b+a=0
=>3a+b=-5 và a+b=0
=>a=-5/2; b=5/2
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t
sai đề!!!! Chả bao h có kiểu đề bài ngu người thế này. CMR cái gì cơ? câu hỏi mất đuôi :v
a, \(=\left(2x^2\right)^2+2.9.2x^2+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
b, \(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2+x\sqrt{2}+1\right)\left(x^2-x\sqrt{2}+1\right)\)
c, \(=\left(8x^2\right)^2+8x^2.2.y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
d, \(=x^2+x-6=0\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Bài 3:
a) Ta có: \(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c) Ta có: \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)