K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

AI LÀM ĐẦU MK K CHO

22 tháng 3 2020

a) \(3\left(2x-1\right)+1=\left(-2\right)^2-3\left(-2\right)^3\)

\(\Leftrightarrow6x-3+1=4+24\)

\(\Leftrightarrow6x=4+24-1+3\)

\(\Leftrightarrow6x=30\)

\(\Leftrightarrow x=5\)

b) \(\left(x-2\right)\left(x+3\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2>0\\x+3>0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>2\\x>-3\end{cases}}\)

c) \(x^2\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm3\\x=-2\end{cases}}\)

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

14 tháng 7 2018

Ta có (x-1)2>0

          (y+2)2>0

=>(x-1)2+(y+2)2>0 mà theo bài ra (x-1)2+(y+2)2<0

=>(x-1)2+(y+2)2=0

=>x-1=0=>x=1;y+2=0=>y=-2

Vậy x=1;y=-2

28 tháng 7 2018

Thank you !!!

18 tháng 9 2018

\(Từ:\frac{x}{3}=\frac{y}{6}\Rightarrow\frac{x^2}{9}=\frac{y^2}{36}\Rightarrow\frac{2x^2}{18}=\frac{y^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{2x^2}{18}=\frac{y^2}{36}=\frac{2x^2-y^2}{18-36}=\frac{-8}{-18}=\frac{4}{9}\)

Suy ra \(\hept{\begin{cases}\frac{2x^2}{18}=\frac{4}{9}\\\frac{y^2}{36}=\frac{4}{9}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=4\\y^2=16\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=\pm2\\y=\pm4\end{cases}}\)

Vậy các cặp x,y thỏa mãn là:2;4 và -2;-4

 7: Tìm nghiệm nguyên của phương trìnhx2 – 2y2 = 58: Tìm x, y là số tự nhiên thoả mãn                     x2 + 3y = 3026 9: Tìm x, y, z nguyên tố thoả mãn   xy + 1 = z10: Tìm nghiệm nguyên của phương trình                             x2 + y2 – x – y = 8 11: Tìm nghiệm nguyên của phương trình                                  x2 – 4xy + 5y2  =...
Đọc tiếp

 7: Tìm nghiệm nguyên của phương trình

x2 – 2y2 = 5

8: Tìm x, y là số tự nhiên thoả mãn

                     x2 + 3y = 3026

 9: Tìm x, y, z nguyên tố thoả mãn   xy + 1 = z

10: Tìm nghiệm nguyên của phương trình

                             x2 + y2 – x – y = 8

 

11: Tìm nghiệm nguyên của phương trình

                                  x2 – 4xy + 5y = 169

12: Tìm nghiệm nguyêm của phương trình

                        x2 – 5y2 = 0

 

13: Tìm nghiệm nguyên của phương trình

                    x2 + y2 + z2 = x2 y2

 

 14: Giải phương trình nghiệm nguyên

3x2 + y2 + 4xy + 4x + 2y + 5 = 0

 

15: Tìm nghiệm nguyên của phương trình

x2 – (y+5)x + 5y + 2 = 0

 

16: Tìm nghiệm nguyên của phương trình

x2 –xy + y2 = 3

12
28 tháng 12 2018

 16: Tìm nghiệm nguyên của phương trình

x2 –xy + y2 = 3

          Hướng dẫn:

Ta có x2 –xy + y2 = 3 ⇔ (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4}

Ta thấy (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4} ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)

28 tháng 12 2018

7: Tìm nghiệm nguyên của phương trình

x2 – 2y2 = 5

Hướng dẫn:

Một số phương pháp giải phương trình nghiệm nguyên-2

và x2 chia cho 5 có các số dư 1 hoặc 4

y2 chia cho 5 có các số dư 1 hoặc 4 ⇒ 2y2 chia cho 5 dư 2 hoặc 3

⇒ x2 – 2 y2 chia cho 5 dư ±1 hoặc ±2 (loại)

Vậy phương trình x2 – 2y2 = 5 vô nghiệm.

29 tháng 3 2018

https://olm.vn/hoi-dap/question/86498.html

  • Câu hỏi của Thiều Thị Nhung
  •  
30 tháng 12 2015

Vì \(\left(x+2y-4\right)^2\ge0\) với mọi x,y

\(\left(2x-3y-1\right)^2\ge0\) với mọi x,y

=>\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)

=>\(\int^{x+2y-4=0}_{2x-3y-1=0}<=>\int^{x+2y=4}_{2x-3y=1}<=>\int^{x=2}_{y=1}\)

 Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn.

30 tháng 12 2015

uh mk sắp làm ra rồi chờ chút nhé

3 tháng 4 2019

Ta có: C=\(4x-4+2x^2y^2-2xy+yx^2-yx-x^2y-3x\)

(=)C=\(x+2x^xy^2-3xy-4\)

=> bậc của đa thức C là 3

4 tháng 4 2019

\(C=4\left(x-1\right)+2x\left(xy^2-y\right)+y\left(x^2-x\right)-x\left(xy+3\right)\)

\(C=4x-4+\left(2xxy^2\right)-2xy+yx^2-yx-xxy-3x\)

\(C=\left(4x-3x\right)-4+2x^2y^2-\left(2xy+yx\right)+yx^2-x^2y\)

\(C=x-4-2x^2y^2-3xy+\left(yx^2-x^2y\right)\)

\(C=x-4-2x^2y^2-3xy\)

Vậy C có bậc là 4