Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
bạn vào đây xem nhé https://olm.vn/hoi-dap/question/222518.html
Ta có: abcd + abc=3576
=> d + c = 6 ; c + b = 7 ; b +a = 5 , a = 2 hoặc 3
Xét a=2
=> b + 2 = 5 => b = 3
=> c + 3 = 7 => c = 4
=> d + 4 = 6 => d = 2 ( Vô lý )
Xét a=3
=> b + 3 = 5 => b = 2
=> c + 2 = 7 => c = 5
=> d + 5 = 6 => d = 1 ( T/Mãn)
Vậy a = 3, b = 2, c = 5, d = 1