K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số cần tìm là \(\overline{ab}\)

Theo đề, ta có: a+b=11 và 10b+a-10a-b=27

=>a+b=11 và -9a+9b=27

=>a+b=11 và a-b=-3

=>a=4 và b=7

Gọi số cần tìm có dạng là \(\overline{ab}\)

2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1

Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143

=>\(\overline{ab}+\overline{ba}=143\)

=>11a+11b=143

=>a+b=13

Do đó, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)

 

26 tháng 1 2022

Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)

Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2

=> PT : 2a - 3b = 2 (1)

Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị 

=> PT : \(\overline{ab}-\overline{ba}=18\)

<=> a - b = 2 (2)

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)

Vậy số cần tìm là 42

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

6 tháng 8 2023

Số tự nhiên 2 chữ số  \(\overline{xy}=10x+y\)

Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)

Khi viết ngược lại :

\(10y+x-\left(10x+y\right)=27\)

\(\Rightarrow10y+x-10x-y=27\)

\(\Rightarrow-9x+9y=27\left(2\right)\)

\(\left(1\right),\left(2\right)\) ta có hệ phương trình

\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)

Vậy số tự nhiên đó là 47

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......

Theo bài ra ta có:
$a+2b=12(1)$

$\overline{a0b}-\overline{ab}=180$

$\Leftrightarrow 100a+b-(10a+b)=180$

$\Leftrightarrow 90a=180$

$\Leftrightarrow a=2(2)$

Từ $(1); (2)\Rightarrow b=5$

Vậy số cần tìm là $25$

10 tháng 1 2022

em cảm ơn nhiều ạ vui

Gọi số cần tìm có dạng là \(\overline{ab}\)

Lấy số đó trừ hai lần tổng các chữ số của nó thì được kết quả là 51 nên ta có:

\(\overline{ab}-2\left(a+b\right)=51\)

=>\(10a+b-2a-2b=51\)

=>8a-b=51(1)

lấy hai lần chữ số hàng chục cộng với ba lần chữ số hàng đơn vị thì được 29 nên 2a+3b=29(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}8a-b=51\\2a+3b=29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}24a-3b=153\\2a+3b=29\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}26a=182\\8a-b=51\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=7\\b=8a-51=8\cdot7-51=56-51=5\end{matrix}\right.\)

Vậy: Số cần tìm là 75