K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

moi hok lop 6

12 tháng 2 2016

mình mới học lớp 5

1 chứng ming rằng 10^2011+8 chia hết cho 722/ cho M=3+3^2+3^3+…+3^119 chứng minh rằng M chia hết cho 133/cho số 155*710*4*16( có gạch ngang trên đầu) chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 3964/ a-tìm chữ số tận cùng của 57^1999 và 93^1999b- cho A=999993^1999-555557^1997 CMR A  chia hết cho 55/ ba ô tô chở khách cùng khởi hành lúc 6...
Đọc tiếp

1 chứng ming rằng 10^2011+8 chia hết cho 72

2/ cho M=3+3^2+3^3+…+3^119 chứng minh rằng M chia hết cho 13

3/cho số 155*710*4*16( có gạch ngang trên đầu) chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396

4/ a-tìm chữ số tận cùng của 57^1999 và 93^1999

b- cho A=999993^1999-555557^1997 CMR A  chia hết cho 5

5/ ba ô tô chở khách cùng khởi hành lúc 6 giờ sang từ 1 bến xe và đi theo 3 hướng khác nhau. Xe thứ 1 quay về bến sau 1 giờ 5 phút và sau 10 phút lại đi . Xe thứ 2 quay về bến sau 56 phút và lại đi sau 4 phút . Xe thứ 3 quay về bến sau 48 phút và sau 2 phút lại đi .Hãy tính khoảng thời gian ngắn nhất để 3 xe lại cùng xuất phát từ bến lần thứ 2 trong ngày và lúc đó là mấy giờ?

0
12 tháng 9 2016

Ta có: - Có thể lấy 5 chữ số để làm hàng trăm, có thể lấy 5 chữ số để làm hàng chục và có thể lấy 2 chữ số làm hàng đơn vị (số đó chia hết cho 2).

            Vậy, ta có thể lập được tất cả số các số có 3 chữ số từ 5 số trên là:

                                            5 . 5 . 2 = 50 (số).

                                                       Đáp số: 50 số.

          

12 tháng 12 2016

   Giải

Ở hàng trăm có 5 cách chọn

Ở hàng chục cũng có 5 cách chọn 

Ở hàng đơn vị chỉ có 2 cách chọn đó là 2 và 4

Vậy lập được số số chia hết cho 2 là :

5*5*2=50

Đáp số :50

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

28 tháng 10 2016

chữ số tận cùng của a2 +1 muốn chia hết cho 5 phải là 0;5

vậy để a2 +1 chia hết cho 5 thì a2 phải có số tận cùng là 4 ; 9

a2 =.............4

a2 = ............9