Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
Ta has: x2+y2≥2xyx ^ 2 + y ^ 2 \ ge2xyx2+y2≥2 x y
⇔2(x2+y2)≥(x+y)2\ Leftrightarrow2 \ left (x ^ 2 + y ^ 2 \ right) \ ge \ left (x + y \ right) ^ 2⇔2( x2+y2)≥( x+y )2
⇔x2+y2≥(x+y)22\ Leftrightarrow x ^ 2 + y ^ 2 \ ge \ frac {\ left (x + y \ right) ^ 2} {2}⇔x2+y2≥2( x + y )2Các bác sĩ cho biết thêm:
Áp dụng vào bài toán có:
P≤x+y(x+y)22+y+z(y+z)22+z+x(z+x)22P \ le \ frac {x + y} {\ frac {\ left (x + y \ right) ^ 2} {2}} + \ frac {y + z} {\ frac {\ left (y + z \ right ) ^ 2} {2}} + \ frac {z + x} {\ frac {\ left (z + x \ right) ^ 2} {2}}P≤2( x + y )2Các bác sĩ cho biết thêm:x + yCác bác sĩ cho biết thêm:+2( y + z )2Các bác sĩ cho biết thêm:y + zCác bác sĩ cho biết thêm:+2( z + x )2Các bác sĩ cho biết thêm:z + xCác bác sĩ cho biết thêm: =2x+y+2y+z+2z+x=12(4x+y+4y+z+4z+x)= \ frac {2} {x + y} + \ frac {2} {y + z} + \ frac {2} {z + x} = \ frac {1} {2} \ left (\ frac {4} {x + y} + \ frac {4} {y + z} + \ frac {4} {z + x} \ right)=x + y2Các bác sĩ cho biết thêm:+y + z2Các bác sĩ cho biết thêm:+z + x2Các bác sĩ cho biết thêm:=21Các bác sĩ cho biết thêm:(x + y4Các bác sĩ cho biết thêm:+y + z4Các bác sĩ cho biết thêm:+z + x4Các bác sĩ cho biết thêm:)
Áp dụng BĐT Svacxo ta có:
4x+y≤1x+1y\ frac {4} {x + y} \ le \ frac {1} {x} + \ frac {1} {y}x + y4Các bác sĩ cho biết thêm:≤x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:, 4y+z≤1y+1z\ frac {4} {y + z} \ le \ frac {1} {y} + \ frac {1} {z}y + z4Các bác sĩ cho biết thêm:≤y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:, 4z+x≤1z+1x\ frac {4} {z + x} \ le \ frac {1} {z} + \ frac {1} {x}z + x4Các bác sĩ cho biết thêm:≤z1Các bác sĩ cho biết thêm:+x1Các bác sĩ cho biết thêm:
Do đó: P≤12[2.(1x+1y+1z)]=2016P \ le \ frac {1} {2} \ left [2. \ left (\ frac {1} {x} + \ frac {1} {y} + \ frac {1} {z} \ right) \ right ] = 2016P≤21Các bác sĩ cho biết thêm:[ 2 .(x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:) ]=2 0 1 6
Dấu "=" ⇔x=y=z=1672\ Leftrightarrow x = y = z = \ frac {1} {672}⇔x=y=z=6 7 21Các bác sĩ cho biết thêm:
P / s: Dấu "=" không chắc lắm :))
Học tốt đêý nhá
ta có 5x=7y=3z= \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
ADTC dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra:
\(\frac{x^2}{25}=9\Rightarrow x^2=25.9\Rightarrow x^2=225\Rightarrow x^2=15^2\Rightarrow x=15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49\Rightarrow y^2=441\Rightarrow y^2=21^2\Rightarrow y=21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9\Rightarrow z^2=81\Rightarrow z^2=9^2\Rightarrow z=9\)
Vậy x = 15;y=21;z=9
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+y^2+z^2}{4+9+16}=\dfrac{116}{29}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.4=16\\y^2=4.9=36\\z^2=16.16=16^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=6\\z=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-6\\z=-16\end{matrix}\right.\end{matrix}\right.\)
Lời giải:
Theo bài ra ta có:
$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$
$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$
Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$
$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:
$3x^2-y^2+z^2=876$
$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$
$\Rightarrow 219k^2=876$
$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$
Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$
Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
xyz=235 nha
xyz=235