K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}< =>\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)

\(=>\hept{\begin{cases}\frac{x}{2}=1=>x=2\\\frac{y}{3}=1=>y=3\\\frac{z}{5}=1=>z=5\end{cases}}\)

Vậy ...

4 tháng 1 2016

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\left(\frac{z}{5}\right)^2\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Theo t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)

=> x=2; y=3; z=5

=> xyz = 235

12 tháng 6 2018

Đặt  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)

Mà  \(x^2+y^2+z^2=200\)

\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)

\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)

\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)

\(\Leftrightarrow kak^2.50=200\)

\(\Leftrightarrow kak^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)

+) Với  \(kak=2\)thì  \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)

+) Với  \(kak=-2\)thì  \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)

Vậy ...

12 tháng 6 2018

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có :  \(xyz=-30\)

\(\Leftrightarrow2k\times3k\times5k=-30\)

\(\Leftrightarrow30k^3=-30\)

\(\Leftrightarrow k^3=-1\)

\(\Leftrightarrow k=-1\)

Thay vào ta được :

\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)

Vậy ...

29 tháng 11 2016

vì x/2 =y/3=z/4 nên x2/4 = y2/ 9 = 2z2/32

áp dụng .............................

=> x2/4 = y2 /9 = 2z2 /32 = x2-y2+2z2  / 4 -9 +32  = 108 / 27 =4

=> x2 = 16 => x = 4

   y2 =36 => y = 6

  2z2 = 128 => z =8

                     

đặt x/2 = y/3 = z/4 =k ( k khác 0 )

=> x = 2k 

     y=3k

     z =4k

=> xyz = 2k3k4k = 24k = -480 => k= -20

=> x=-40

     y=-60 

     z=-80

29 tháng 11 2016

Pham Trung: Dòng thứ tư tính từ dưới lên trên: 2k3k4k = 24* k^3 (ko phải 24k nhé ^^!)

15 tháng 3 2019

a,-200 x10 t10z3

b,\(\frac{-5}{4}\)x11 y5 z4

c,\(\frac{2}{15}\)x6 y6 z9

d,\(\frac{1}{7}\)x10 y6 z7

e,-4z6 y10 z6

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15