Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
\(A\le\left|A\right|=\dfrac{\left|xy+yz+xz\right|}{\left|xyz\right|}\)
Áp dụng: \(\left|a+b+c\right|\le\left|a\right|+\left|b\right|+\left|c\right|\)
\(\left|A\right|\le\dfrac{\left|xy\right|+\left|yz\right|+\left|xz\right|}{\left|xyz\right|}=\dfrac{1}{\left|x\right|}+\dfrac{1}{\left|y\right|}+\dfrac{1}{\left|z\right|}\)
\(\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)
Ta có đpcm. Dấu "=" khi \(x=y=z=3\)
Thêm 1 hướng suy nghĩ khác
Ta có: \(\left|x\right|\ge3;\left|y\right|\ge3;\left|z\right|\ge3\)
\(\Rightarrow0< \dfrac{1}{\left|x\right|}\le\dfrac{1}{3};0< \dfrac{1}{\left|y\right|}\le\dfrac{1}{3};0< \dfrac{1}{\left|z\right|}\le\dfrac{1}{3}\)
Ta có:
\(A=\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{1}{\left|x\right|}+\dfrac{1}{\left|y\right|}+\dfrac{1}{\left|z\right|}\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
Ta có x+y+1=0=>xây =-1
A = x3+x2.y- x.y2-y3 + x2 - y2 +2.x+2.y +3
A = x2 .(x+y)- y2 .(x+y) + x² - y² +2.(x+y)+3
A= x².(-1)-y².(-1)+ x²-y²+ (-2)+3
A= x².0-y².0+1=1
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
Bài nãy dễ thôi
Do x,y có vai trò như nhau nên KMTTQ, g/s x>=y
TH1; x=y => 3x+1 chia hết cho x
=> 1 chia hết cho x=> x=1=> Loại do x>1.
TH2 x>y=> 3x>3y=> 3x+1>3y+1 (1)
Có 3y+1 chia hết cho x
=> 3y+1=kx (k thuộc N*) (2)
(1), (2) => 3x+1>kx
=> k=1;2;3
*k=1=> 3y+1=x=> 9y+3=3x=> 9y+4=3x+1
Có 3x+1 chia hết cho y
=> 9y+4 chia hết cho y
=> 4 chia hết cho y
=> y=2;4 => x=7; 13.
*k=2 => 3y+1=2x=>9y+3=6x
Có 3x+1 chia hết cho y=> 6x+2 chia hết cho y
=> 9y+3 chia hết cho y
=> 3 chia hết cho y
=> y= 3 => x=5.
*k=3=> 3y+1=3x=> 3y+2=3x+1
Có: 3x+1 chia hết cho y
=> 3y+2 chia hết cho y
=> 2 chia hết cho y
=> y=2=>x ko có giá trị.