\(A = {{x} \over (x+2018)^2}\)

Đạt giá trị lớn nhất...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.

Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)

\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)

\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)

Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)

Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)

28 tháng 11 2018

chỗ 1/A bạn thay bằng 1/H nhé.

27 tháng 6 2015

\(A=\frac{1}{7-x}\)

A lớn nhất khi  7-x nhỏ nhất và 7-x >0

vậy 7-x = 1 <=> x = 6

\(B=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)

 B lớn nhất khi 3/ (12-x) lớn nhất  => 12-x phải là số nguyên( để x nguyên) VÀ nhỏ nhất với giá trị dương.

Giá trị dương nhỏ nhất là 1 => 12 -x = 1 => x = 11

vậy x = 11 thì B lớn nhất

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

27 tháng 11 2018

@Trần Trung Nguyên

30 tháng 11 2018

H= \(\dfrac{x}{x\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2}=\dfrac{1}{\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2}\)

để H max thì \(\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2\) min

Áp dụng BĐT cô si cho 2 số ko âm ta có

\(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{2018}{\sqrt{x}}}=2\sqrt{2018}\)

=>\(\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2\ge8072\)

H max= \(\dfrac{1}{8072}\)

Dấu "=" xảy ra khi

\(\sqrt{x}=\dfrac{2018}{\sqrt{x}}\Rightarrow x=2018\)

Vậy ....

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

25 tháng 5 2019

Công thức trên ghi sai, Công thức đúng như dưới đây:

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

26 tháng 5 2019

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}.1+\sqrt{y\left(2y+x\right)}.1}\)

\(S\ge\frac{x+y}{\frac{3x+y}{2}+\frac{3y+x}{2}}=\frac{2\left(x+y\right)}{4\left(x+y\right)}=\frac{1}{2}\)(BĐT cosi)

Vậy Min = 1/2 <=> x = y