Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(5^x.5^{x+1}.5^{x+2}=5^x.5^x.5.5^x.5^2=5^{x+x+x+1+3}=5^{3x+3}\le10^{18}:2^{118}\)
\(=>5^{3x+3}\le5^{18}=>3x+3\le18=>x\le5=>x\in\left\{0;1;2;3;4;5\right\}\)
**** bn, câu a tự lm nhé
a) x15= x.
=> x15- x= 0.
=> x( x14- 1)= 0.
=> \(\orbr{\begin{cases}x=0.\\x^{14}-1=0.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x^{14}=1.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)
Vậy x\(\in\) { 0; 1}
b) 16x< 128.
Nếu x= 0 thì 16x= 160= 0( chọn)
Nếu x= 1 thì 16x= 161= 16( chọn)
Nếu x= 2 thì 16x= 162= 256( loại)
Vậy x\(\in\) { 0; 1}
c) 5x. 5x+ 1. 5x+ 2\(\le\) 1000...00: 218( 18 chữ số 0)
=> 5x+ x+ 1+ x+ 2\(\le\) 1018: 218.
=> 53x+ 3\(\le\) 518.
=> 3x+ 3\(\le\) 18.
=> 3x\(\le\) 15.
=> x\(\le\) 5.
=> x\(\in\){ 0; 1; 2; 3; 4; 5}
Vậy x\(\in\){ 0; 1; 2; 3; 4; 5}
d) 2x.( 22)2=( 23)2.
=> 2x. 24= 26.
=> 2x= 26: 24.
=> 2x= 22.
=> x= 2.
Vậy x= 2.
e)( x5)10= x.
=> x50- x= 0.
=> x( x49- 1)= 0.
=> \(\orbr{\begin{cases}x=0.\\x^{49}-1=0.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x^{49}=1.\end{cases}}\)
=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)
Vậy x\(\in\) { 0; 1}
\(x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x\left(x^{14}-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\Rightarrow x=\pm1\end{cases}}\)
16x<1284
=>(24)x<(27)4
=>24x<228
=>4x<28
=>x<7
=>x=0;1;2;3;4;5;6
vậy x=0;1;2;3;4;5;6
b,=>5x.5x+1.5x+2<1010:218
=>53x+3<510.210:218
=>53x+3<510.28
=>53x+3:510<28
=>53(x+1)-10<256<54
=>3(x+1)-10<4
=>3(x+1)<4+10
=>x+1<14/3<5
=>x<4
=>x=0;1;2;3
vậy x=0;1;2;3
16^x < 128^4
=> 2^4x < 2^7.4
=> 2 ^4x < 2^28
=> 4x < 28
=> x < 7
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)