Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
x(y-1)+2(y-1)-5=0
(x+2)(y-1)=-5
Vì x+2>0 => y-1<0
Mà y thuộc N => y-1 =-1=> y=0
x+2=5=>x=3
a, Tìm cặp số tự nhiên x,y biết (x-2) .(y + 7) =17
b,Tìm số tự nhiên n để ( 3n+16) chia hết cho (n+4)
ta có y+7 là số tự nhiên lớn hơn 7 và là ước của 17
thế nên \(\hept{\begin{cases}y+7=17\\x-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=10\\x=3\end{cases}}}\)
b. ta có : \(3n+14=3\times\left(n+4\right)+2\) chia hết cho n+4 khi 2 chia hết cho n+4
mà n là số tự nhiên nên n+4 > 3 thế nên không tồn tại số tự nhiên thỏa mãn
Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}<1\Rightarrow x>1\)
Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3
Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}<\frac{1}{2}\Rightarrow y>2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)
mà y >2 => y = 3 hoặc 4
y = 3 => z = 6;
y = 4 => z = 4
nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}<\frac{2}{3}\Rightarrow y>\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)
theo đề bài x<= y nên y = 3 => z = 3
Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)
x(y+1)+(y+1)=1
(y+1)(x+1)=1
y+1=1=>y=0
x+1=1=> x=0=> x=y=0
x+1=-1=>x=-2
y+1=-1=> y=-2=> x=y=-2
TH1: để xem xy có khác nhau ko nếu khacs nhau thí thiếu điều kiện
TH2: nếu có thể giống nhau thì xy đều =0
\(\Leftrightarrow x\left(y+1\right)=y+16\Rightarrow x=\dfrac{y+16}{y+1}=1+\dfrac{15}{y+1}\left(y\ne-1\right)\)
Để x nguyên thì y+1 là ước của 15
\(\Rightarrow y+1=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow y=\left\{-16;-6;-4;-2;0;2;4;14\right\}\)
\(\Rightarrow x=\left\{0;-2;-4;-14;16;6;4;2\right\}\)