Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
1 . Để số tự nhiên 2x98y chia hết cho 2,5 thì y = 0
Theo như dấu hiệu chia hết đã học , số có tổng chữ số chia hết cho 3 thì chia hết cho 3
Tổng các chữ số trong số đó là :
2 + 9 + 8 + 0 = 19
Vậy để số 2x980 chia hết cho 3 thì x = 5
Tổng của các chữ số nếu x = 5 là :
2 + 5 + 9 +8 + 0 = 24
Mà 24 chia hết cho 3 nên x = 5
Vậy số x = 5 ; y = 0
bt 1 giải
vì 1960 / a dư 28 nên 1960 - 28 = 1932 chia hết cho a ( a > 28 )
vì 2002 / a dư 28 nên 2002 - 28 = 1974 chia hết cho a ( a> 28 )
=> a thuộc ƯC ( 1932 ; 1974 )
ta có 1932 = 22 . 3 . 7 . 23
1974 = 2 . 3 . 7 .47
=> ƯCLN ( 1932 ; 1974 ) = 2 . 3 .7 = 42
=> ƯC ( 1932 ; 1972 ) = Ư ( 42 ) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
theo trên ta có
a > 28 nên a = 42
bt 2
vì 45=5.9 nên ( 5;9 ) = 1 nên số 4x5y : 45 thì phải chia hết cho 5 và 9
=> y = 0 hoặc 5
trường hợp 1 y= 0 thì 4x50 chia hết cho 9 => ( 4+x+5+0) chia hết cho 9 => (9+x) chia hết cho 9 => x chia hết cho 9 => x= 0 hoặc 9
trường hợp 2 y=5 thì 4x55 chia hết cho 9 => (4+x+5+5) chia hết cho 5 => (14+x) chia hết cho 9 => x = 4
vậy x=0 ; y=0 có 4050 chia hết 45
x=9 ; y=0 có 4950 chia hết 45
x=4 ; y=5 có 4455 chia hết 45
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
a, \(\overline{4a7}\) + \(\overline{15b}\) ⋮ 5 và 9
A = \(\overline{4a7}\) + \(\overline{15b}\)
A = 407 + a \(\times\) 10 + 150 + b
A = 557 + a \(\times\) 10 + b
A ⋮ 5 ⇔ b + 7 ⋮ 5 ⇒ b = 3; 8
A ⋮ 9 ⇔ 4+a+7+1+5+b ⋮ 9 ⇒ a+b+8 ⋮ 9 ⇒ a + b = 1; 10
Lập bảng ta có:
a+b | 1 | 10 |
b | 3 | 3 |
a | -2(loại) | 7 |
a+b | 1 | 10 |
b | 8 | 8 |
a | -7(loại) | 2 |
Theo bảng trên ta có các cặp chữ số a; b thỏa mãn đề bài là:
(a;b) = (7;3); (2;8)
b,B = \(\overline{17ab}\) ⋮2; 3 chia 5 dư 1
B : 5 dư 1 ⇒ b = 1; 6; B ⋮ 2 ⇒ b = 6
B ⋮ 3 ⇔ 1 + 7 + a + b ⋮ 3 ⇒ 8+a+6 ⋮ 3 ⇒ a+ 2 ⋮ 3 ⇒ a + 2 = 3; 6; 9;
Lập bảng ta có:
a + 2 | 3 | 6 | 9 |
a | 1 | 4 | 7 |
Theo bảng trên ta có: a = 1;4;7
Vậy B = 1716; 1746; 1776
\(\overline{x4y}⋮5\Rightarrow\orbr{\begin{cases}y=0\\y=5\end{cases}}\)mà \(\overline{x4y}\)là số chẵn nên \(y=0\).
\(\overline{x40}⋮9\Rightarrow x+4+0⋮9\Rightarrow x=5\).