K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021
Tìm số tự nhiên x biết 2^x+1 là số chính phương
2 tháng 1 2016

đúng nhưng bài làm . tick cho tớ nhé tớ là bai chứng minh của cậu rồi

24 tháng 3 2021

Giả sử \(^{2^x+1=a^2}\), ta có:

<=> \(2^x=a^2-1\)

<=>\(2^x=a^2-a+a-1\)

<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)

<=>\(2^x=\left(a-1\right)\left(a+1\right)\)

=>

  • \(a-1=2^y\)<=>\(a=2^y+1\)
  • \(a+1=2^z\)<=>\(a=2^z-1\)

(x=y+z)

=> \(2^y+1=2^z-1\)

<=>\(2^z-2^y=2\)

<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)

<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)

Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:

  • \(2^{y-1}=1\)<=> y-1 = 0 <=> y=1
  • \(2^{z-1}=2\)<=> z-1 = 1 <=> z=2

=> x = y+z = 1+2 = 3.

18 tháng 4 2017

bai 1 to chiu

18 tháng 4 2017

bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056

11 tháng 12 2015

1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên 
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84. 
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương. 
Vậy n = 40 

11 tháng 12 2015

1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2)   Xin lỗi mình chỉ biết làm câu 1 thôi