K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

22 tháng 8 2023

1) \(3^x+3^{x+1}+3^{x+2}=351\)

\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)

\(\Rightarrow3^x.13=351\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(\Rightarrow C=30+2^4.30...+2^{96}.30\)

\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)

mà \(30=5.6\)

\(\Rightarrow C⋮5\left(dpcm\right)\)

22 tháng 8 2023

1,

Có \(3^x\)\(3^{x+1}\) + \(3^{x+2}\) = \(351\)

=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)

=> \(3^x\).\(13\) = \(351\)

=> \(3^x\) = \(27\)

=> \(x\) = \(3\)

2,

C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)

2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)

2C - C = \(2^{101}\) - \(2\)

C = \(2^{101}\) - \(2\)

C = \(2\).\(\left(2^{100}-1\right)\)

C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)

Có \(2^5\) \(-1\) \(⋮\) 5

=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5

=> C \(⋮\) 5

3,

Xét \(\overline{abcdeg}\)

\(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)

\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)

=> \(\overline{abcdeg}⋮9\)

4,

S = \(3^0+3^2+3^4+...+3^{2002}\)

9S = \(3^2+3^4+3^6+...+3^{2004}\)

9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))

8S = \(3^{2004}-1\)

=> 8S \(< 3^{2004}\)

10 tháng 2 2019

khiếp cho cả tràng dài thế đứa nào nó lm đc

có nó rảnh quá nó ms lm hết cho m T ạ

10 tháng 2 2019

kệ, xem có ai lm đc ko

18 tháng 7 2016

Câu 1:

\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)

\(A=0\)

       Ta có:Số số hạng từ 2 đến 101 là:

                      (101-2):1+1=100(số hạng)

                 Do đó từ 2 đến 101 có số cặp là:

                       100:2=50(cặp)

\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)

\(B=\frac{5151}{51}\)

\(B=101\)

Câu 2:

a)697:\(\frac{15x+364}{x}\)=17

   \(\frac{15x+364}{x}\)=697:17

    \(\frac{15x+364}{x}\)=41

     15x+364=41x

      41x-15x=364

      26x=364

      x=14

Vậy x=14

b)92.4-27=\(\frac{x+350}{x}+315\)

  \(\frac{x+350}{x}+315\)=341

   \(\frac{x+350}{x}\)=26

    x+350=26

    x=26-350

   x=-324

Vậy x=-324

c, 720 : [ 41 - ( 2x -5)] = 40

    [ 41 - ( 2x -5)] =720:40

     [ 41 - ( 2x -5)] =18

      2x-5=41-18

      2x-5=23

      2x=28

      x=14

Vậy x=14

 d, Số số hạng từ 1 đến 100 là:

       (100-1):1+1=100(số hạng)

Tổng dãy số là:
      (100+1)x100:2=5050

          Mà cứ 1 số hạng lại có 1x suy ra có 100x

Ta có:(x+1) + (x+2) +...+ (x+100) = 5750

         (x+x+...+x)+(1+2+...+100)=5750

          100x+5050=5750

          100x=700

           x=7

Vậy x=7

6 tháng 1 2018

1) 

Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y

=> Để 6x + 99 = 20y thì 6x là số lẻ

=> x = 0      

Thay x = 0 ta có 60 + 99 = 20y

                    =>   1  + 99 = 20y

                    =>    100     = 20y

                    => y  = 100 ; 20

                    => y =        5

Vậy x = 0, y = 5

16 tháng 3 2022

`Answer:`

2.

Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)

\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)

\(=4+3^2.13+3^{98}.13\)

\(=4+13.\left(3^2+...+3^{98}\right)\)

Vậy `M` chia `13` dư `4`

Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)

\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)

\(=1+3.40+3^5.40+...+3^{97}.40\)

\(=1+40.\left(3+3^5+...+3^{97}\right)\)

Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)

Vậy `M` chia `40` dư `1`

28 tháng 6 2023

a, để tính tổng A = 1 + 2 + 3 + 4 + … + 99 + 100, ta áp dụng công thức tổng của dãy số từ 1 đến n: S = (n * (n + 1)) / 2.
Với n = 100, ta có: A = (100 * (100 + 1)) / 2 = 5050.

b, để tính tổng B = 4 + 7 + 10 + 13 + … + 301, ta nhận thấy các số trong dãy này tạo thành một cấp số cộng với công sai d = 3.
Ta có công thức tổng của cấp số cộng: S = (n/2) * (a + l), trong đó n là số phần tử, a là số đầu tiên, l là số cuối cùng.
Số đầu tiên a = 4, số cuối cùng l = 301, và công sai d = 3.
Số phần tử n = ((l - a) / d) + 1 = ((301 - 4) / 3) + 1 = 100.
Vậy tổng B = (100/2) * (4 + 301) = 50 * 305 = 15250.

B2, để tính tổng của tất cả các số tự nhiên x, biết x là số có 2 chữ số và 12 < x < 91, ta cần tính tổng các số từ 13 đến 90.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 13 và b = 90, ta có: S = ((90 - 13 + 1) * (13 + 90)) / 2 = (78 * 103) / 2 = 4014.

B3, để tính tổng của tất cả các số tự nhiên a, biết a có 3 chữ số và 119 < a < 501, ta cần tính tổng các số từ 120 đến 500.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 120 và b = 500, ta có: S = ((500 - 120 + 1) * (120 + 500)) / 2 = (381 * 620) / 2 = 118260.

29 tháng 12 2017

1. 5x+27 là bội của x+1 

=> 5x+27 chia hết cho x+1 

=> 5(x+1)+22 chia hết cho x+1 

Mà 5(x+1) chia hết cho x+1

=> 22 chia hết cho x+1 

=> x+1 thuộc Ư(22) 

Tiếp theo bạn tự làm nhé